From 2a789562d0fe67328fa4498e60d6f29d5602a1c7 Mon Sep 17 00:00:00 2001 From: Shiva Subramanian <7301747+gitshiva@users.noreply.github.com> Date: Tue, 13 Feb 2024 17:56:50 -0500 Subject: [PATCH 1/2] fixed errors - converted train_features and test_features to tensor, then updated Horsepower references to specific columns in array, otherwise this nb was failing due to data type mismatches --- site/en/tutorials/keras/regression.ipynb | 17 ++++++++++------- 1 file changed, 10 insertions(+), 7 deletions(-) diff --git a/site/en/tutorials/keras/regression.ipynb b/site/en/tutorials/keras/regression.ipynb index e3af85a7b90..007f761a07d 100644 --- a/site/en/tutorials/keras/regression.ipynb +++ b/site/en/tutorials/keras/regression.ipynb @@ -368,7 +368,10 @@ "test_features = test_dataset.copy()\n", "\n", "train_labels = train_features.pop('MPG')\n", - "test_labels = test_features.pop('MPG')" + "test_labels = test_features.pop('MPG')", + "\n", + "train_features = tf.convert_to_tensor(train_features, dtype=tf.float32)\n", + "test_features = tf.convert_to_tensor(test_features, dtype=tf.float32)" ] }, { @@ -545,7 +548,7 @@ }, "outputs": [], "source": [ - "horsepower = np.array(train_features['Horsepower'])\n", + "horsepower = np.array(train_features[:, 2])\n", "\n", "horsepower_normalizer = layers.Normalization(input_shape=[1,], axis=None)\n", "horsepower_normalizer.adapt(horsepower)" @@ -639,7 +642,7 @@ "source": [ "%%time\n", "history = horsepower_model.fit(\n", - " train_features['Horsepower'],\n", + " train_features[:, 2],\n", " train_labels,\n", " epochs=100,\n", " # Suppress logging.\n", @@ -719,7 +722,7 @@ "test_results = {}\n", "\n", "test_results['horsepower_model'] = horsepower_model.evaluate(\n", - " test_features['Horsepower'],\n", + " test_features[:, 2],\n", " test_labels, verbose=0)" ] }, @@ -753,7 +756,7 @@ "outputs": [], "source": [ "def plot_horsepower(x, y):\n", - " plt.scatter(train_features['Horsepower'], train_labels, label='Data')\n", + " plt.scatter(train_features[:, 2], train_labels, label='Data')\n", " plt.plot(x, y, color='k', label='Predictions')\n", " plt.xlabel('Horsepower')\n", " plt.ylabel('MPG')\n", @@ -1053,7 +1056,7 @@ "source": [ "%%time\n", "history = dnn_horsepower_model.fit(\n", - " train_features['Horsepower'],\n", + " train_features[:, 2],\n", " train_labels,\n", " validation_split=0.2,\n", " verbose=0, epochs=100)" @@ -1129,7 +1132,7 @@ "outputs": [], "source": [ "test_results['dnn_horsepower_model'] = dnn_horsepower_model.evaluate(\n", - " test_features['Horsepower'], test_labels,\n", + " test_features[:, 2], test_labels,\n", " verbose=0)" ] }, From 995dbaebb91b0588d20cf3732289802564f22b4c Mon Sep 17 00:00:00 2001 From: Shiva Subramanian <7301747+gitshiva@users.noreply.github.com> Date: Tue, 13 Feb 2024 18:21:53 -0500 Subject: [PATCH 2/2] the save model was giving errors in keras format, per https://github.com/keras-team/keras/issues/15348, changed it to TF format, works fine now! --- site/en/tutorials/keras/regression.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/site/en/tutorials/keras/regression.ipynb b/site/en/tutorials/keras/regression.ipynb index 007f761a07d..d5da28a782b 100644 --- a/site/en/tutorials/keras/regression.ipynb +++ b/site/en/tutorials/keras/regression.ipynb @@ -1324,7 +1324,7 @@ }, "outputs": [], "source": [ - "dnn_model.save('dnn_model.keras')" + "dnn_model.save('dnn_model.tf', save_format='tf')" ] }, { @@ -1344,7 +1344,7 @@ }, "outputs": [], "source": [ - "reloaded = tf.keras.models.load_model('dnn_model.keras')\n", + "reloaded = tf.keras.models.load_model('dnn_model.tf')\n", "\n", "test_results['reloaded'] = reloaded.evaluate(\n", " test_features, test_labels, verbose=0)"