-
Notifications
You must be signed in to change notification settings - Fork 45.6k
/
Copy pathclassifier_data_lib.py
1612 lines (1384 loc) · 55.7 KB
/
classifier_data_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT library to process data for classification task."""
import collections
import csv
import importlib
import json
import os
from absl import logging
import tensorflow as tf, tf_keras
import tensorflow_datasets as tfds
from official.nlp.tools import tokenization
class InputExample(object):
"""A single training/test example for simple seq regression/classification."""
def __init__(self,
guid,
text_a,
text_b=None,
label=None,
weight=None,
example_id=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string for classification, float for regression. The
label of the example. This should be specified for train and dev
examples, but not for test examples.
weight: (Optional) float. The weight of the example to be used during
training.
example_id: (Optional) int. The int identification number of example in
the corpus.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
self.weight = weight
self.example_id = example_id
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
input_ids,
input_mask,
segment_ids,
label_id,
is_real_example=True,
weight=None,
example_id=None):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
self.is_real_example = is_real_example
self.weight = weight
self.example_id = example_id
class DataProcessor(object):
"""Base class for converters for seq regression/classification datasets."""
def __init__(self, process_text_fn=tokenization.convert_to_unicode):
self.process_text_fn = process_text_fn
self.is_regression = False
self.label_type = None
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir):
"""Gets a collection of `InputExample`s for prediction."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@staticmethod
def get_processor_name():
"""Gets the string identifier of the processor."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with tf.io.gfile.GFile(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
@classmethod
def _read_jsonl(cls, input_file):
"""Reads a json line file."""
with tf.io.gfile.GFile(input_file, "r") as f:
lines = []
for json_str in f:
lines.append(json.loads(json_str))
return lines
def featurize_example(self, *kargs, **kwargs):
"""Converts a single `InputExample` into a single `InputFeatures`."""
return convert_single_example(*kargs, **kwargs)
class DefaultGLUEDataProcessor(DataProcessor):
"""Processor for the SuperGLUE dataset."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples_tfds("train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples_tfds("validation")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples_tfds("test")
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
raise NotImplementedError()
class AxProcessor(DataProcessor):
"""Processor for the AX dataset (GLUE diagnostics dataset)."""
def get_train_examples(self, data_dir):
"""See base class."""
train_mnli_dataset = tfds.load(
"glue/mnli", split="train", try_gcs=True).as_numpy_iterator()
return self._create_examples_tfds(train_mnli_dataset, "train")
def get_dev_examples(self, data_dir):
"""See base class."""
val_mnli_dataset = tfds.load(
"glue/mnli", split="validation_matched",
try_gcs=True).as_numpy_iterator()
return self._create_examples_tfds(val_mnli_dataset, "validation")
def get_test_examples(self, data_dir):
"""See base class."""
test_ax_dataset = tfds.load(
"glue/ax", split="test", try_gcs=True).as_numpy_iterator()
return self._create_examples_tfds(test_ax_dataset, "test")
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
@staticmethod
def get_processor_name():
"""See base class."""
return "AX"
def _create_examples_tfds(self, dataset, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "contradiction"
text_a = self.process_text_fn(example["hypothesis"])
text_b = self.process_text_fn(example["premise"])
if set_type != "test":
label = self.get_labels()[example["label"]]
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label,
weight=None))
return examples
class ColaProcessor(DefaultGLUEDataProcessor):
"""Processor for the CoLA data set (GLUE version)."""
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "COLA"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/cola", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "0"
text_a = self.process_text_fn(example["sentence"])
if set_type != "test":
label = str(example["label"])
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=None, label=label, weight=None))
return examples
class ImdbProcessor(DataProcessor):
"""Processor for the IMDb dataset."""
def get_labels(self):
return ["neg", "pos"]
def get_train_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "train"))
def get_dev_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, "test"))
@staticmethod
def get_processor_name():
"""See base class."""
return "IMDB"
def _create_examples(self, data_dir):
"""Creates examples."""
examples = []
for label in ["neg", "pos"]:
cur_dir = os.path.join(data_dir, label)
for filename in tf.io.gfile.listdir(cur_dir):
if not filename.endswith("txt"):
continue
if len(examples) % 1000 == 0:
logging.info("Loading dev example %d", len(examples))
path = os.path.join(cur_dir, filename)
with tf.io.gfile.GFile(path, "r") as f:
text = f.read().strip().replace("<br />", " ")
examples.append(
InputExample(
guid="unused_id", text_a=text, text_b=None, label=label))
return examples
class MnliProcessor(DataProcessor):
"""Processor for the MultiNLI data set (GLUE version)."""
def __init__(self,
mnli_type="matched",
process_text_fn=tokenization.convert_to_unicode):
super(MnliProcessor, self).__init__(process_text_fn)
self.dataset = tfds.load("glue/mnli", try_gcs=True)
if mnli_type not in ("matched", "mismatched"):
raise ValueError("Invalid `mnli_type`: %s" % mnli_type)
self.mnli_type = mnli_type
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples_tfds("train")
def get_dev_examples(self, data_dir):
"""See base class."""
if self.mnli_type == "matched":
return self._create_examples_tfds("validation_matched")
else:
return self._create_examples_tfds("validation_mismatched")
def get_test_examples(self, data_dir):
"""See base class."""
if self.mnli_type == "matched":
return self._create_examples_tfds("test_matched")
else:
return self._create_examples_tfds("test_mismatched")
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
@staticmethod
def get_processor_name():
"""See base class."""
return "MNLI"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/mnli", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "contradiction"
text_a = self.process_text_fn(example["hypothesis"])
text_b = self.process_text_fn(example["premise"])
if set_type != "test":
label = self.get_labels()[example["label"]]
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label,
weight=None))
return examples
class MrpcProcessor(DefaultGLUEDataProcessor):
"""Processor for the MRPC data set (GLUE version)."""
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "MRPC"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/mrpc", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "0"
text_a = self.process_text_fn(example["sentence1"])
text_b = self.process_text_fn(example["sentence2"])
if set_type != "test":
label = str(example["label"])
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label,
weight=None))
return examples
class PawsxProcessor(DataProcessor):
"""Processor for the PAWS-X data set."""
supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]
def __init__(self,
language="en",
process_text_fn=tokenization.convert_to_unicode):
super(PawsxProcessor, self).__init__(process_text_fn)
if language == "all":
self.languages = PawsxProcessor.supported_languages
elif language not in PawsxProcessor.supported_languages:
raise ValueError("language %s is not supported for PAWS-X task." %
language)
else:
self.languages = [language]
def get_train_examples(self, data_dir):
"""See base class."""
lines = []
for language in self.languages:
if language == "en":
train_tsv = "train.tsv"
else:
train_tsv = "translated_train.tsv"
# Skips the header.
lines.extend(
self._read_tsv(os.path.join(data_dir, language, train_tsv))[1:])
examples = []
for i, line in enumerate(lines):
guid = "train-%d" % i
text_a = self.process_text_fn(line[1])
text_b = self.process_text_fn(line[2])
label = self.process_text_fn(line[3])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_dev_examples(self, data_dir):
"""See base class."""
lines = []
for lang in PawsxProcessor.supported_languages:
lines.extend(
self._read_tsv(os.path.join(data_dir, lang, "dev_2k.tsv"))[1:])
examples = []
for i, line in enumerate(lines):
guid = "dev-%d" % i
text_a = self.process_text_fn(line[1])
text_b = self.process_text_fn(line[2])
label = self.process_text_fn(line[3])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_test_examples(self, data_dir):
"""See base class."""
examples_by_lang = {k: [] for k in self.supported_languages}
for lang in self.supported_languages:
lines = self._read_tsv(os.path.join(data_dir, lang, "test_2k.tsv"))[1:]
for i, line in enumerate(lines):
guid = "test-%d" % i
text_a = self.process_text_fn(line[1])
text_b = self.process_text_fn(line[2])
label = self.process_text_fn(line[3])
examples_by_lang[lang].append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples_by_lang
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "XTREME-PAWS-X"
class QnliProcessor(DefaultGLUEDataProcessor):
"""Processor for the QNLI data set (GLUE version)."""
def get_labels(self):
"""See base class."""
return ["entailment", "not_entailment"]
@staticmethod
def get_processor_name():
"""See base class."""
return "QNLI"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/qnli", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "entailment"
text_a = self.process_text_fn(example["question"])
text_b = self.process_text_fn(example["sentence"])
if set_type != "test":
label = self.get_labels()[example["label"]]
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label,
weight=None))
return examples
class QqpProcessor(DefaultGLUEDataProcessor):
"""Processor for the QQP data set (GLUE version)."""
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "QQP"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/qqp", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "0"
text_a = self.process_text_fn(example["question1"])
text_b = self.process_text_fn(example["question2"])
if set_type != "test":
label = str(example["label"])
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label,
weight=None))
return examples
class RteProcessor(DefaultGLUEDataProcessor):
"""Processor for the RTE data set (GLUE version)."""
def get_labels(self):
"""See base class."""
# All datasets are converted to 2-class split, where for 3-class datasets we
# collapse neutral and contradiction into not_entailment.
return ["entailment", "not_entailment"]
@staticmethod
def get_processor_name():
"""See base class."""
return "RTE"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/rte", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "entailment"
text_a = self.process_text_fn(example["sentence1"])
text_b = self.process_text_fn(example["sentence2"])
if set_type != "test":
label = self.get_labels()[example["label"]]
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label,
weight=None))
return examples
class SstProcessor(DefaultGLUEDataProcessor):
"""Processor for the SST-2 data set (GLUE version)."""
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "SST-2"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/sst2", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "0"
text_a = self.process_text_fn(example["sentence"])
if set_type != "test":
label = str(example["label"])
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=None, label=label, weight=None))
return examples
class StsBProcessor(DefaultGLUEDataProcessor):
"""Processor for the STS-B data set (GLUE version)."""
def __init__(self, process_text_fn=tokenization.convert_to_unicode):
super(StsBProcessor, self).__init__(process_text_fn=process_text_fn)
self.is_regression = True
self.label_type = float
self._labels = None
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/stsb", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = 0.0
text_a = self.process_text_fn(example["sentence1"])
text_b = self.process_text_fn(example["sentence2"])
if set_type != "test":
label = self.label_type(example["label"])
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label,
weight=None))
return examples
def get_labels(self):
"""See base class."""
return self._labels
@staticmethod
def get_processor_name():
"""See base class."""
return "STS-B"
class TfdsProcessor(DataProcessor):
"""Processor for generic text classification and regression TFDS data set.
The TFDS parameters are expected to be provided in the tfds_params string, in
a comma-separated list of parameter assignments.
Examples:
tfds_params="dataset=scicite,text_key=string"
tfds_params="dataset=imdb_reviews,test_split=,dev_split=test"
tfds_params="dataset=glue/cola,text_key=sentence"
tfds_params="dataset=glue/sst2,text_key=sentence"
tfds_params="dataset=glue/qnli,text_key=question,text_b_key=sentence"
tfds_params="dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2"
tfds_params="dataset=glue/stsb,text_key=sentence1,text_b_key=sentence2,"
"is_regression=true,label_type=float"
tfds_params="dataset=snli,text_key=premise,text_b_key=hypothesis,"
"skip_label=-1"
Possible parameters (please refer to the documentation of Tensorflow Datasets
(TFDS) for the meaning of individual parameters):
dataset: Required dataset name (potentially with subset and version number).
data_dir: Optional TFDS source root directory.
module_import: Optional Dataset module to import.
train_split: Name of the train split (defaults to `train`).
dev_split: Name of the dev split (defaults to `validation`).
test_split: Name of the test split (defaults to `test`).
text_key: Key of the text_a feature (defaults to `text`).
text_b_key: Key of the second text feature if available.
label_key: Key of the label feature (defaults to `label`).
test_text_key: Key of the text feature to use in test set.
test_text_b_key: Key of the second text feature to use in test set.
test_label: String to be used as the label for all test examples.
label_type: Type of the label key (defaults to `int`).
weight_key: Key of the float sample weight (is not used if not provided).
is_regression: Whether the task is a regression problem (defaults to False).
skip_label: Skip examples with given label (defaults to None).
"""
def __init__(self,
tfds_params,
process_text_fn=tokenization.convert_to_unicode):
super(TfdsProcessor, self).__init__(process_text_fn)
self._process_tfds_params_str(tfds_params)
if self.module_import:
importlib.import_module(self.module_import)
self.dataset, info = tfds.load(
self.dataset_name, data_dir=self.data_dir, with_info=True)
if self.is_regression:
self._labels = None
else:
self._labels = list(range(info.features[self.label_key].num_classes))
def _process_tfds_params_str(self, params_str):
"""Extracts TFDS parameters from a comma-separated assignments string."""
dtype_map = {"int": int, "float": float}
cast_str_to_bool = lambda s: s.lower() not in ["false", "0"]
tuples = [x.split("=") for x in params_str.split(",")]
d = {k.strip(): v.strip() for k, v in tuples}
self.dataset_name = d["dataset"] # Required.
self.data_dir = d.get("data_dir", None)
self.module_import = d.get("module_import", None)
self.train_split = d.get("train_split", "train")
self.dev_split = d.get("dev_split", "validation")
self.test_split = d.get("test_split", "test")
self.text_key = d.get("text_key", "text")
self.text_b_key = d.get("text_b_key", None)
self.label_key = d.get("label_key", "label")
self.test_text_key = d.get("test_text_key", self.text_key)
self.test_text_b_key = d.get("test_text_b_key", self.text_b_key)
self.test_label = d.get("test_label", "test_example")
self.label_type = dtype_map[d.get("label_type", "int")]
self.is_regression = cast_str_to_bool(d.get("is_regression", "False"))
self.weight_key = d.get("weight_key", None)
self.skip_label = d.get("skip_label", None)
if self.skip_label is not None:
self.skip_label = self.label_type(self.skip_label)
def get_train_examples(self, data_dir):
assert data_dir is None
return self._create_examples(self.train_split, "train")
def get_dev_examples(self, data_dir):
assert data_dir is None
return self._create_examples(self.dev_split, "dev")
def get_test_examples(self, data_dir):
assert data_dir is None
return self._create_examples(self.test_split, "test")
def get_labels(self):
return self._labels
def get_processor_name(self):
return "TFDS_" + self.dataset_name
def _create_examples(self, split_name, set_type):
"""Creates examples for the training/dev/test sets."""
if split_name not in self.dataset:
raise ValueError("Split {} not available.".format(split_name))
dataset = self.dataset[split_name].as_numpy_iterator()
examples = []
text_b, weight = None, None
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
if set_type == "test":
text_a = self.process_text_fn(example[self.test_text_key])
if self.test_text_b_key:
text_b = self.process_text_fn(example[self.test_text_b_key])
label = self.test_label
else:
text_a = self.process_text_fn(example[self.text_key])
if self.text_b_key:
text_b = self.process_text_fn(example[self.text_b_key])
label = self.label_type(example[self.label_key])
if self.skip_label is not None and label == self.skip_label:
continue
if self.weight_key:
weight = float(example[self.weight_key])
examples.append(
InputExample(
guid=guid,
text_a=text_a,
text_b=text_b,
label=label,
weight=weight))
return examples
class WnliProcessor(DefaultGLUEDataProcessor):
"""Processor for the WNLI data set (GLUE version)."""
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "WNLI"
def _create_examples_tfds(self, set_type):
"""Creates examples for the training/dev/test sets."""
dataset = tfds.load(
"glue/wnli", split=set_type, try_gcs=True).as_numpy_iterator()
dataset = list(dataset)
dataset.sort(key=lambda x: x["idx"])
examples = []
for i, example in enumerate(dataset):
guid = "%s-%s" % (set_type, i)
label = "0"
text_a = self.process_text_fn(example["sentence1"])
text_b = self.process_text_fn(example["sentence2"])
if set_type != "test":
label = str(example["label"])
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label,
weight=None))
return examples
class XnliProcessor(DataProcessor):
"""Processor for the XNLI data set."""
supported_languages = [
"ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
"ur", "vi", "zh"
]
def __init__(self,
language="en",
process_text_fn=tokenization.convert_to_unicode):
super(XnliProcessor, self).__init__(process_text_fn)
if language == "all":
self.languages = XnliProcessor.supported_languages
elif language not in XnliProcessor.supported_languages:
raise ValueError("language %s is not supported for XNLI task." % language)
else:
self.languages = [language]
def get_train_examples(self, data_dir):
"""See base class."""
lines = []
for language in self.languages:
# Skips the header.
lines.extend(
self._read_tsv(
os.path.join(data_dir, "multinli",
"multinli.train.%s.tsv" % language))[1:])
examples = []
for i, line in enumerate(lines):
guid = "train-%d" % i
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
if label == self.process_text_fn("contradictory"):
label = self.process_text_fn("contradiction")
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_dev_examples(self, data_dir):
"""See base class."""
lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
guid = "dev-%d" % i
text_a = self.process_text_fn(line[6])
text_b = self.process_text_fn(line[7])
label = self.process_text_fn(line[1])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_test_examples(self, data_dir):
"""See base class."""
lines = self._read_tsv(os.path.join(data_dir, "xnli.test.tsv"))
examples_by_lang = {k: [] for k in XnliProcessor.supported_languages}
for i, line in enumerate(lines):
if i == 0:
continue
guid = "test-%d" % i
language = self.process_text_fn(line[0])
text_a = self.process_text_fn(line[6])
text_b = self.process_text_fn(line[7])
label = self.process_text_fn(line[1])
examples_by_lang[language].append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples_by_lang
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
@staticmethod
def get_processor_name():
"""See base class."""
return "XNLI"
class XtremePawsxProcessor(DataProcessor):
"""Processor for the XTREME PAWS-X data set."""
supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]
def __init__(self,
process_text_fn=tokenization.convert_to_unicode,
translated_data_dir=None,
only_use_en_dev=True):
"""See base class.
Args:
process_text_fn: See base class.
translated_data_dir: If specified, will also include translated data in
the training and testing data.
only_use_en_dev: If True, only use english dev data. Otherwise, use dev
data from all languages.
"""
super(XtremePawsxProcessor, self).__init__(process_text_fn)
self.translated_data_dir = translated_data_dir
self.only_use_en_dev = only_use_en_dev
def get_train_examples(self, data_dir):
"""See base class."""
examples = []
if self.translated_data_dir is None:
lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))
for i, line in enumerate(lines):
guid = "train-%d" % i
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
else:
for lang in self.supported_languages:
lines = self._read_tsv(
os.path.join(self.translated_data_dir, "translate-train",
f"en-{lang}-translated.tsv"))
for i, line in enumerate(lines):
guid = f"train-{lang}-{i}"
text_a = self.process_text_fn(line[2])
text_b = self.process_text_fn(line[3])
label = self.process_text_fn(line[4])
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_dev_examples(self, data_dir):
"""See base class."""
examples = []
if self.only_use_en_dev:
lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
for i, line in enumerate(lines):
guid = "dev-%d" % i
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
else:
for lang in self.supported_languages:
lines = self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv"))
for i, line in enumerate(lines):
guid = f"dev-{lang}-{i}"
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = self.process_text_fn(line[2])
examples.append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_test_examples(self, data_dir):
"""See base class."""
examples_by_lang = {}
for lang in self.supported_languages:
examples_by_lang[lang] = []
lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
for i, line in enumerate(lines):
guid = f"test-{lang}-{i}"
text_a = self.process_text_fn(line[0])
text_b = self.process_text_fn(line[1])
label = "0"
examples_by_lang[lang].append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
if self.translated_data_dir is not None:
for lang in self.supported_languages:
if lang == "en":
continue
examples_by_lang[f"{lang}-en"] = []
lines = self._read_tsv(
os.path.join(self.translated_data_dir, "translate-test",
f"test-{lang}-en-translated.tsv"))
for i, line in enumerate(lines):
guid = f"test-{lang}-en-{i}"
text_a = self.process_text_fn(line[2])
text_b = self.process_text_fn(line[3])
label = "0"
examples_by_lang[f"{lang}-en"].append(
InputExample(
guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples_by_lang
def get_labels(self):
"""See base class."""
return ["0", "1"]
@staticmethod
def get_processor_name():
"""See base class."""
return "XTREME-PAWS-X"
class XtremeXnliProcessor(DataProcessor):
"""Processor for the XTREME XNLI data set."""
supported_languages = [
"ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
"ur", "vi", "zh"
]
def __init__(self,
process_text_fn=tokenization.convert_to_unicode,
translated_data_dir=None,
only_use_en_dev=True):
"""See base class.
Args:
process_text_fn: See base class.
translated_data_dir: If specified, will also include translated data in
the training data.
only_use_en_dev: If True, only use english dev data. Otherwise, use dev
data from all languages.
"""
super(XtremeXnliProcessor, self).__init__(process_text_fn)
self.translated_data_dir = translated_data_dir
self.only_use_en_dev = only_use_en_dev
def get_train_examples(self, data_dir):
"""See base class."""