-
Notifications
You must be signed in to change notification settings - Fork 45.6k
/
Copy pathmobile_bert_layers.py
575 lines (511 loc) · 22.9 KB
/
mobile_bert_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MobileBERT embedding and transformer layers."""
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.nlp.modeling.layers import on_device_embedding
from official.nlp.modeling.layers import position_embedding
@tf_keras.utils.register_keras_serializable(package='Text')
class NoNorm(tf_keras.layers.Layer):
"""Apply element-wise linear transformation to the last dimension."""
def __init__(self, name=None):
super().__init__(name=name)
def build(self, shape):
kernal_size = shape[-1]
self.bias = self.add_weight('beta',
shape=[kernal_size],
initializer='zeros')
self.scale = self.add_weight('gamma',
shape=[kernal_size],
initializer='ones')
def call(self, feature):
output = feature * self.scale + self.bias
return output
def _get_norm_layer(normalization_type='no_norm', name=None):
"""Get normlization layer.
Args:
normalization_type: String. The type of normalization_type, only
`no_norm` and `layer_norm` are supported.
name: Name for the norm layer.
Returns:
layer norm class.
"""
if normalization_type == 'no_norm':
layer = NoNorm(name=name)
elif normalization_type == 'layer_norm':
layer = tf_keras.layers.LayerNormalization(
name=name,
axis=-1,
epsilon=1e-12,
dtype=tf.float32)
else:
raise NotImplementedError('Only "no_norm" and "layer_norm" and supported.')
return layer
@tf_keras.utils.register_keras_serializable(package='Text')
class MobileBertEmbedding(tf_keras.layers.Layer):
"""Performs an embedding lookup for MobileBERT.
This layer includes word embedding, token type embedding, position embedding.
"""
def __init__(self,
word_vocab_size,
word_embed_size,
type_vocab_size,
output_embed_size,
max_sequence_length=512,
normalization_type='no_norm',
initializer=tf_keras.initializers.TruncatedNormal(stddev=0.02),
dropout_rate=0.1,
**kwargs):
"""Class initialization.
Args:
word_vocab_size: Number of words in the vocabulary.
word_embed_size: Word embedding size.
type_vocab_size: Number of word types.
output_embed_size: Embedding size for the final embedding output.
max_sequence_length: Maximum length of input sequence.
normalization_type: String. The type of normalization_type, only
`no_norm` and `layer_norm` are supported.
initializer: The initializer to use for the embedding weights and
linear projection weights.
dropout_rate: Dropout rate.
**kwargs: keyword arguments.
"""
super().__init__(**kwargs)
self.word_vocab_size = word_vocab_size
self.word_embed_size = word_embed_size
self.type_vocab_size = type_vocab_size
self.output_embed_size = output_embed_size
self.max_sequence_length = max_sequence_length
self.normalization_type = normalization_type
self.initializer = tf_keras.initializers.get(initializer)
self.dropout_rate = dropout_rate
self.word_embedding = on_device_embedding.OnDeviceEmbedding(
self.word_vocab_size,
self.word_embed_size,
initializer=tf_utils.clone_initializer(self.initializer),
name='word_embedding')
self.type_embedding = on_device_embedding.OnDeviceEmbedding(
self.type_vocab_size,
self.output_embed_size,
initializer=tf_utils.clone_initializer(self.initializer),
name='type_embedding')
self.pos_embedding = position_embedding.PositionEmbedding(
max_length=max_sequence_length,
initializer=tf_utils.clone_initializer(self.initializer),
name='position_embedding')
self.word_embedding_proj = tf_keras.layers.EinsumDense(
'abc,cd->abd',
output_shape=[None, self.output_embed_size],
kernel_initializer=tf_utils.clone_initializer(self.initializer),
bias_axes='d',
name='embedding_projection')
self.layer_norm = _get_norm_layer(normalization_type, 'embedding_norm')
self.dropout_layer = tf_keras.layers.Dropout(
self.dropout_rate,
name='embedding_dropout')
def get_config(self):
config = {
'word_vocab_size': self.word_vocab_size,
'word_embed_size': self.word_embed_size,
'type_vocab_size': self.type_vocab_size,
'output_embed_size': self.output_embed_size,
'max_sequence_length': self.max_sequence_length,
'normalization_type': self.normalization_type,
'initializer': tf_keras.initializers.serialize(self.initializer),
'dropout_rate': self.dropout_rate
}
base_config = super(MobileBertEmbedding, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, input_ids, token_type_ids=None):
word_embedding_out = self.word_embedding(input_ids)
word_embedding_out = tf.concat(
[tf.pad(word_embedding_out[:, 1:], ((0, 0), (0, 1), (0, 0))),
word_embedding_out,
tf.pad(word_embedding_out[:, :-1], ((0, 0), (1, 0), (0, 0)))],
axis=2)
word_embedding_out = self.word_embedding_proj(word_embedding_out)
pos_embedding_out = self.pos_embedding(word_embedding_out)
embedding_out = word_embedding_out + pos_embedding_out
if token_type_ids is not None:
type_embedding_out = self.type_embedding(token_type_ids)
embedding_out += type_embedding_out
embedding_out = self.layer_norm(embedding_out)
embedding_out = self.dropout_layer(embedding_out)
return embedding_out
@tf_keras.utils.register_keras_serializable(package='Text')
class MobileBertTransformer(tf_keras.layers.Layer):
"""Transformer block for MobileBERT.
An implementation of one layer (block) of Transformer with bottleneck and
inverted-bottleneck for MobilerBERT.
Original paper for MobileBERT:
https://arxiv.org/pdf/2004.02984.pdf
"""
def __init__(self,
hidden_size=512,
num_attention_heads=4,
intermediate_size=512,
intermediate_act_fn='relu',
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
intra_bottleneck_size=128,
use_bottleneck_attention=False,
key_query_shared_bottleneck=True,
num_feedforward_networks=4,
normalization_type='no_norm',
initializer=tf_keras.initializers.TruncatedNormal(stddev=0.02),
**kwargs):
"""Class initialization.
Args:
hidden_size: Hidden size for the Transformer input and output tensor.
num_attention_heads: Number of attention heads in the Transformer.
intermediate_size: The size of the "intermediate" (a.k.a., feed
forward) layer.
intermediate_act_fn: The non-linear activation function to apply
to the output of the intermediate/feed-forward layer.
hidden_dropout_prob: Dropout probability for the hidden layers.
attention_probs_dropout_prob: Dropout probability of the attention
probabilities.
intra_bottleneck_size: Size of bottleneck.
use_bottleneck_attention: Use attention inputs from the bottleneck
transformation. If true, the following `key_query_shared_bottleneck`
will be ignored.
key_query_shared_bottleneck: Whether to share linear transformation for
keys and queries.
num_feedforward_networks: Number of stacked feed-forward networks.
normalization_type: The type of normalization_type, only `no_norm` and
`layer_norm` are supported. `no_norm` represents the element-wise
linear transformation for the student model, as suggested by the
original MobileBERT paper. `layer_norm` is used for the teacher model.
initializer: The initializer to use for the embedding weights and
linear projection weights.
**kwargs: keyword arguments.
Raises:
ValueError: A Tensor shape or parameter is invalid.
"""
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.intermediate_act_fn = intermediate_act_fn
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.intra_bottleneck_size = intra_bottleneck_size
self.use_bottleneck_attention = use_bottleneck_attention
self.key_query_shared_bottleneck = key_query_shared_bottleneck
self.num_feedforward_networks = num_feedforward_networks
self.normalization_type = normalization_type
self.initializer = tf_keras.initializers.get(initializer)
if intra_bottleneck_size % num_attention_heads != 0:
raise ValueError(
(f'The bottleneck size {intra_bottleneck_size} is not a multiple '
f'of the number of attention heads {num_attention_heads}.'))
attention_head_size = int(intra_bottleneck_size / num_attention_heads)
self.block_layers = {}
# add input bottleneck
dense_layer_2d = tf_keras.layers.EinsumDense(
'abc,cd->abd',
output_shape=[None, self.intra_bottleneck_size],
bias_axes='d',
kernel_initializer=tf_utils.clone_initializer(self.initializer),
name='bottleneck_input/dense')
layer_norm = _get_norm_layer(self.normalization_type,
name='bottleneck_input/norm')
self.block_layers['bottleneck_input'] = [dense_layer_2d,
layer_norm]
if self.key_query_shared_bottleneck:
dense_layer_2d = tf_keras.layers.EinsumDense(
'abc,cd->abd',
output_shape=[None, self.intra_bottleneck_size],
bias_axes='d',
kernel_initializer=tf_utils.clone_initializer(self.initializer),
name='kq_shared_bottleneck/dense')
layer_norm = _get_norm_layer(self.normalization_type,
name='kq_shared_bottleneck/norm')
self.block_layers['kq_shared_bottleneck'] = [dense_layer_2d,
layer_norm]
# add attention layer
attention_layer = tf_keras.layers.MultiHeadAttention(
num_heads=self.num_attention_heads,
key_dim=attention_head_size,
value_dim=attention_head_size,
dropout=self.attention_probs_dropout_prob,
output_shape=self.intra_bottleneck_size,
kernel_initializer=tf_utils.clone_initializer(self.initializer),
name='attention')
layer_norm = _get_norm_layer(self.normalization_type,
name='attention/norm')
self.block_layers['attention'] = [attention_layer,
layer_norm]
# add stacked feed-forward networks
self.block_layers['ffn'] = []
for ffn_layer_idx in range(self.num_feedforward_networks):
layer_prefix = f'ffn_layer_{ffn_layer_idx}'
layer_name = layer_prefix + '/intermediate_dense'
intermediate_layer = tf_keras.layers.EinsumDense(
'abc,cd->abd',
activation=self.intermediate_act_fn,
output_shape=[None, self.intermediate_size],
bias_axes='d',
kernel_initializer=tf_utils.clone_initializer(self.initializer),
name=layer_name)
layer_name = layer_prefix + '/output_dense'
output_layer = tf_keras.layers.EinsumDense(
'abc,cd->abd',
output_shape=[None, self.intra_bottleneck_size],
bias_axes='d',
kernel_initializer=tf_utils.clone_initializer(self.initializer),
name=layer_name)
layer_name = layer_prefix + '/norm'
layer_norm = _get_norm_layer(self.normalization_type,
name=layer_name)
self.block_layers['ffn'].append([intermediate_layer,
output_layer,
layer_norm])
# add output bottleneck
bottleneck = tf_keras.layers.EinsumDense(
'abc,cd->abd',
output_shape=[None, self.hidden_size],
activation=None,
bias_axes='d',
kernel_initializer=tf_utils.clone_initializer(self.initializer),
name='bottleneck_output/dense')
dropout_layer = tf_keras.layers.Dropout(
self.hidden_dropout_prob,
name='bottleneck_output/dropout')
layer_norm = _get_norm_layer(self.normalization_type,
name='bottleneck_output/norm')
self.block_layers['bottleneck_output'] = [bottleneck,
dropout_layer,
layer_norm]
def get_config(self):
config = {
'hidden_size': self.hidden_size,
'num_attention_heads': self.num_attention_heads,
'intermediate_size': self.intermediate_size,
'intermediate_act_fn': self.intermediate_act_fn,
'hidden_dropout_prob': self.hidden_dropout_prob,
'attention_probs_dropout_prob': self.attention_probs_dropout_prob,
'intra_bottleneck_size': self.intra_bottleneck_size,
'use_bottleneck_attention': self.use_bottleneck_attention,
'key_query_shared_bottleneck': self.key_query_shared_bottleneck,
'num_feedforward_networks': self.num_feedforward_networks,
'normalization_type': self.normalization_type,
'initializer': tf_keras.initializers.serialize(self.initializer),
}
base_config = super(MobileBertTransformer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self,
input_tensor,
attention_mask=None,
return_attention_scores=False):
"""Implementes the forward pass.
Args:
input_tensor: Float tensor of shape
`(batch_size, seq_length, hidden_size)`.
attention_mask: (optional) int32 tensor of shape
`(batch_size, seq_length, seq_length)`, with 1 for positions that can
be attended to and 0 in positions that should not be.
return_attention_scores: If return attention score.
Returns:
layer_output: Float tensor of shape
`(batch_size, seq_length, hidden_size)`.
attention_scores (Optional): Only when return_attention_scores is True.
Raises:
ValueError: A Tensor shape or parameter is invalid.
"""
input_width = input_tensor.shape.as_list()[-1]
if input_width != self.hidden_size:
raise ValueError(
(f'The width of the input tensor {input_width} != '
f'hidden size {self.hidden_size}'))
prev_output = input_tensor
# input bottleneck
dense_layer = self.block_layers['bottleneck_input'][0]
layer_norm = self.block_layers['bottleneck_input'][1]
layer_input = dense_layer(prev_output)
layer_input = layer_norm(layer_input)
if self.use_bottleneck_attention:
key_tensor = layer_input
query_tensor = layer_input
value_tensor = layer_input
elif self.key_query_shared_bottleneck:
dense_layer = self.block_layers['kq_shared_bottleneck'][0]
layer_norm = self.block_layers['kq_shared_bottleneck'][1]
shared_attention_input = dense_layer(prev_output)
shared_attention_input = layer_norm(shared_attention_input)
key_tensor = shared_attention_input
query_tensor = shared_attention_input
value_tensor = prev_output
else:
key_tensor = prev_output
query_tensor = prev_output
value_tensor = prev_output
# attention layer
attention_layer = self.block_layers['attention'][0]
layer_norm = self.block_layers['attention'][1]
attention_output, attention_scores = attention_layer(
query_tensor,
value_tensor,
key_tensor,
attention_mask,
return_attention_scores=True,
)
attention_output = layer_norm(attention_output + layer_input)
# stacked feed-forward networks
layer_input = attention_output
for ffn_idx in range(self.num_feedforward_networks):
intermediate_layer = self.block_layers['ffn'][ffn_idx][0]
output_layer = self.block_layers['ffn'][ffn_idx][1]
layer_norm = self.block_layers['ffn'][ffn_idx][2]
intermediate_output = intermediate_layer(layer_input)
layer_output = output_layer(intermediate_output)
layer_output = layer_norm(layer_output + layer_input)
layer_input = layer_output
# output bottleneck
bottleneck = self.block_layers['bottleneck_output'][0]
dropout_layer = self.block_layers['bottleneck_output'][1]
layer_norm = self.block_layers['bottleneck_output'][2]
layer_output = bottleneck(layer_output)
layer_output = dropout_layer(layer_output)
layer_output = layer_norm(layer_output + prev_output)
if return_attention_scores:
return layer_output, attention_scores
else:
return layer_output
@tf_keras.utils.register_keras_serializable(package='Text')
class MobileBertMaskedLM(tf_keras.layers.Layer):
"""Masked language model network head for BERT modeling.
This layer implements a masked language model based on the provided
transformer based encoder. It assumes that the encoder network being passed
has a "get_embedding_table()" method. Different from canonical BERT's masked
LM layer, when the embedding width is smaller than hidden_size, it adds an
extra output weights in shape [vocab_size, (hidden_size - embedding_width)].
"""
def __init__(self,
embedding_table,
activation=None,
initializer='glorot_uniform',
output='logits',
output_weights_use_proj=False,
**kwargs):
"""Class initialization.
Args:
embedding_table: The embedding table from encoder network.
activation: The activation, if any, for the dense layer.
initializer: The initializer for the dense layer. Defaults to a Glorot
uniform initializer.
output: The output style for this layer. Can be either `logits` or
`predictions`.
output_weights_use_proj: Use projection instead of concating extra output
weights, this may reduce the MLM task accuracy but will reduce the model
params as well.
**kwargs: keyword arguments.
"""
super().__init__(**kwargs)
self.embedding_table = embedding_table
self.activation = activation
self.initializer = tf_keras.initializers.get(initializer)
if output not in ('predictions', 'logits'):
raise ValueError(
('Unknown `output` value "%s". `output` can be either "logits" or '
'"predictions"') % output)
self._output_type = output
self._output_weights_use_proj = output_weights_use_proj
def build(self, input_shape):
self._vocab_size, embedding_width = self.embedding_table.shape
hidden_size = input_shape[-1]
self.dense = tf_keras.layers.Dense(
hidden_size,
activation=self.activation,
kernel_initializer=tf_utils.clone_initializer(self.initializer),
name='transform/dense')
if hidden_size > embedding_width:
if self._output_weights_use_proj:
self.extra_output_weights = self.add_weight(
'output_weights_proj',
shape=(embedding_width, hidden_size),
initializer=tf_utils.clone_initializer(self.initializer),
trainable=True)
else:
self.extra_output_weights = self.add_weight(
'extra_output_weights',
shape=(self._vocab_size, hidden_size - embedding_width),
initializer=tf_utils.clone_initializer(self.initializer),
trainable=True)
elif hidden_size == embedding_width:
self.extra_output_weights = None
else:
raise ValueError(
'hidden size %d cannot be smaller than embedding width %d.' %
(hidden_size, embedding_width))
self.layer_norm = tf_keras.layers.LayerNormalization(
axis=-1, epsilon=1e-12, name='transform/LayerNorm')
self.bias = self.add_weight(
'output_bias/bias',
shape=(self._vocab_size,),
initializer='zeros',
trainable=True)
super(MobileBertMaskedLM, self).build(input_shape)
def call(self, sequence_data, masked_positions):
masked_lm_input = self._gather_indexes(sequence_data, masked_positions)
lm_data = self.dense(masked_lm_input)
lm_data = self.layer_norm(lm_data)
if self.extra_output_weights is None:
lm_data = tf.matmul(lm_data, self.embedding_table, transpose_b=True)
else:
if self._output_weights_use_proj:
lm_data = tf.matmul(
lm_data, self.extra_output_weights, transpose_b=True)
lm_data = tf.matmul(lm_data, self.embedding_table, transpose_b=True)
else:
lm_data = tf.matmul(
lm_data,
tf.concat([self.embedding_table, self.extra_output_weights],
axis=1),
transpose_b=True)
logits = tf.nn.bias_add(lm_data, self.bias)
masked_positions_length = masked_positions.shape.as_list()[1] or tf.shape(
masked_positions)[1]
logits = tf.reshape(logits,
[-1, masked_positions_length, self._vocab_size])
if self._output_type == 'logits':
return logits
return tf.nn.log_softmax(logits)
def get_config(self):
raise NotImplementedError('MaskedLM cannot be directly serialized because '
'it has variable sharing logic.')
def _gather_indexes(self, sequence_tensor, positions):
"""Gathers the vectors at the specific positions.
Args:
sequence_tensor: Sequence output of `BertModel` layer of shape
`(batch_size, seq_length, num_hidden)` where `num_hidden` is number of
hidden units of `BertModel` layer.
positions: Positions ids of tokens in sequence to mask for pretraining
of with dimension `(batch_size, num_predictions)` where
`num_predictions` is maximum number of tokens to mask out and predict
per each sequence.
Returns:
Masked out sequence tensor of shape
`(batch_size * num_predictions, num_hidden)`.
"""
sequence_shape = tf.shape(sequence_tensor)
batch_size, seq_length = sequence_shape[0], sequence_shape[1]
width = sequence_tensor.shape.as_list()[2] or sequence_shape[2]
flat_offsets = tf.reshape(
tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
flat_positions = tf.reshape(positions + flat_offsets, [-1])
flat_sequence_tensor = tf.reshape(sequence_tensor,
[batch_size * seq_length, width])
output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
return output_tensor