-
Notifications
You must be signed in to change notification settings - Fork 45.6k
/
Copy pathtf_sequence_example_decoder.py
263 lines (237 loc) · 11 KB
/
tf_sequence_example_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tensorflow Sequence Example proto decoder.
A decoder to decode string tensors containing serialized
tensorflow.SequenceExample protos.
"""
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.core import data_decoder
from object_detection.core import standard_fields as fields
tfexample_decoder = slim.tfexample_decoder
class BoundingBoxSequence(tfexample_decoder.ItemHandler):
"""An ItemHandler that concatenates SparseTensors to Bounding Boxes.
"""
def __init__(self, keys=None, prefix=None, return_dense=True,
default_value=-1.0):
"""Initialize the bounding box handler.
Args:
keys: A list of four key names representing the ymin, xmin, ymax, xmax
in the Example or SequenceExample.
prefix: An optional prefix for each of the bounding box keys in the
Example or SequenceExample. If provided, `prefix` is prepended to each
key in `keys`.
return_dense: if True, returns a dense tensor; if False, returns as
sparse tensor.
default_value: The value used when the `tensor_key` is not found in a
particular `TFExample`.
Raises:
ValueError: if keys is not `None` and also not a list of exactly 4 keys
"""
if keys is None:
keys = ['ymin', 'xmin', 'ymax', 'xmax']
elif len(keys) != 4:
raise ValueError('BoundingBoxSequence expects 4 keys but got {}'.format(
len(keys)))
self._prefix = prefix
self._keys = keys
self._full_keys = [prefix + k for k in keys]
self._return_dense = return_dense
self._default_value = default_value
super(BoundingBoxSequence, self).__init__(self._full_keys)
def tensors_to_item(self, keys_to_tensors):
"""Maps the given dictionary of tensors to a concatenated list of bboxes.
Args:
keys_to_tensors: a mapping of TF-Example keys to parsed tensors.
Returns:
[time, num_boxes, 4] tensor of bounding box coordinates, in order
[y_min, x_min, y_max, x_max]. Whether the tensor is a SparseTensor
or a dense Tensor is determined by the return_dense parameter. Empty
positions in the sparse tensor are filled with -1.0 values.
"""
sides = []
for key in self._full_keys:
value = keys_to_tensors[key]
expanded_dims = tf.concat(
[tf.to_int64(tf.shape(value)),
tf.constant([1], dtype=tf.int64)], 0)
side = tf.sparse_reshape(value, expanded_dims)
sides.append(side)
bounding_boxes = tf.sparse_concat(2, sides)
if self._return_dense:
bounding_boxes = tf.sparse_tensor_to_dense(
bounding_boxes, default_value=self._default_value)
return bounding_boxes
class TFSequenceExampleDecoder(data_decoder.DataDecoder):
"""Tensorflow Sequence Example proto decoder."""
def __init__(self):
"""Constructor sets keys_to_features and items_to_handlers."""
self.keys_to_context_features = {
'image/format':
tf.FixedLenFeature((), tf.string, default_value='jpeg'),
'image/filename':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/key/sha256':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/source_id':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/height':
tf.FixedLenFeature((), tf.int64, 1),
'image/width':
tf.FixedLenFeature((), tf.int64, 1),
}
self.keys_to_features = {
'image/encoded': tf.FixedLenSequenceFeature((), tf.string),
'bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
'bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
'bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
'bbox/ymax': tf.VarLenFeature(dtype=tf.float32),
'bbox/label/index': tf.VarLenFeature(dtype=tf.int64),
'bbox/label/string': tf.VarLenFeature(tf.string),
'area': tf.VarLenFeature(tf.float32),
'is_crowd': tf.VarLenFeature(tf.int64),
'difficult': tf.VarLenFeature(tf.int64),
'group_of': tf.VarLenFeature(tf.int64),
}
self.items_to_handlers = {
fields.InputDataFields.image:
tfexample_decoder.Image(
image_key='image/encoded',
format_key='image/format',
channels=3,
repeated=True),
fields.InputDataFields.source_id: (
tfexample_decoder.Tensor('image/source_id')),
fields.InputDataFields.key: (
tfexample_decoder.Tensor('image/key/sha256')),
fields.InputDataFields.filename: (
tfexample_decoder.Tensor('image/filename')),
# Object boxes and classes.
fields.InputDataFields.groundtruth_boxes:
BoundingBoxSequence(prefix='bbox/'),
fields.InputDataFields.groundtruth_classes: (
tfexample_decoder.Tensor('bbox/label/index')),
fields.InputDataFields.groundtruth_area:
tfexample_decoder.Tensor('area'),
fields.InputDataFields.groundtruth_is_crowd: (
tfexample_decoder.Tensor('is_crowd')),
fields.InputDataFields.groundtruth_difficult: (
tfexample_decoder.Tensor('difficult')),
fields.InputDataFields.groundtruth_group_of: (
tfexample_decoder.Tensor('group_of'))
}
def decode(self, tf_seq_example_string_tensor, items=None):
"""Decodes serialized tf.SequenceExample and returns a tensor dictionary.
Args:
tf_seq_example_string_tensor: A string tensor holding a serialized
tensorflow example proto.
items: The list of items to decode. These must be a subset of the item
keys in self._items_to_handlers. If `items` is left as None, then all
of the items in self._items_to_handlers are decoded.
Returns:
A dictionary of the following tensors.
fields.InputDataFields.image - 3D uint8 tensor of shape [None, None, seq]
containing image(s).
fields.InputDataFields.source_id - string tensor containing original
image id.
fields.InputDataFields.key - string tensor with unique sha256 hash key.
fields.InputDataFields.filename - string tensor with original dataset
filename.
fields.InputDataFields.groundtruth_boxes - 2D float32 tensor of shape
[None, 4] containing box corners.
fields.InputDataFields.groundtruth_classes - 1D int64 tensor of shape
[None] containing classes for the boxes.
fields.InputDataFields.groundtruth_area - 1D float32 tensor of shape
[None] containing object mask area in pixel squared.
fields.InputDataFields.groundtruth_is_crowd - 1D bool tensor of shape
[None] indicating if the boxes enclose a crowd.
fields.InputDataFields.groundtruth_difficult - 1D bool tensor of shape
[None] indicating if the boxes represent `difficult` instances.
"""
serialized_example = tf.reshape(tf_seq_example_string_tensor, shape=[])
decoder = TFSequenceExampleDecoderHelper(self.keys_to_context_features,
self.keys_to_features,
self.items_to_handlers)
if not items:
items = decoder.list_items()
tensors = decoder.decode(serialized_example, items=items)
tensor_dict = dict(zip(items, tensors))
return tensor_dict
class TFSequenceExampleDecoderHelper(data_decoder.DataDecoder):
"""A decoder helper class for TensorFlow SequenceExamples.
To perform this decoding operation, a SequenceExampleDecoder is given a list
of ItemHandlers. Each ItemHandler indicates the set of features.
"""
def __init__(self, keys_to_context_features, keys_to_sequence_features,
items_to_handlers):
"""Constructs the decoder.
Args:
keys_to_context_features: A dictionary from TF-SequenceExample context
keys to either tf.VarLenFeature or tf.FixedLenFeature instances.
See tensorflow's parsing_ops.py.
keys_to_sequence_features: A dictionary from TF-SequenceExample sequence
keys to either tf.VarLenFeature or tf.FixedLenSequenceFeature instances.
items_to_handlers: A dictionary from items (strings) to ItemHandler
instances. Note that the ItemHandler's are provided the keys that they
use to return the final item Tensors.
Raises:
ValueError: If the same key is present for context features and sequence
features.
"""
unique_keys = set()
unique_keys.update(keys_to_context_features)
unique_keys.update(keys_to_sequence_features)
if len(unique_keys) != (
len(keys_to_context_features) + len(keys_to_sequence_features)):
# This situation is ambiguous in the decoder's keys_to_tensors variable.
raise ValueError('Context and sequence keys are not unique. \n'
' Context keys: %s \n Sequence keys: %s' %
(list(keys_to_context_features.keys()),
list(keys_to_sequence_features.keys())))
self._keys_to_context_features = keys_to_context_features
self._keys_to_sequence_features = keys_to_sequence_features
self._items_to_handlers = items_to_handlers
def list_items(self):
"""Returns keys of items."""
return self._items_to_handlers.keys()
def decode(self, serialized_example, items=None):
"""Decodes the given serialized TF-SequenceExample.
Args:
serialized_example: A serialized TF-SequenceExample tensor.
items: The list of items to decode. These must be a subset of the item
keys in self._items_to_handlers. If `items` is left as None, then all
of the items in self._items_to_handlers are decoded.
Returns:
The decoded items, a list of tensor.
"""
context, feature_list = tf.parse_single_sequence_example(
serialized_example, self._keys_to_context_features,
self._keys_to_sequence_features)
# Reshape non-sparse elements just once:
for k in self._keys_to_context_features:
v = self._keys_to_context_features[k]
if isinstance(v, tf.FixedLenFeature):
context[k] = tf.reshape(context[k], v.shape)
if not items:
items = self._items_to_handlers.keys()
outputs = []
for item in items:
handler = self._items_to_handlers[item]
keys_to_tensors = {
key: context[key] if key in context else feature_list[key]
for key in handler.keys
}
outputs.append(handler.tensors_to_item(keys_to_tensors))
return outputs