-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathtutorial_cifar10_distributed_trainer.py
125 lines (102 loc) · 5.26 KB
/
tutorial_cifar10_distributed_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
r"""
1. Before you start, run this script: https://github.com/tensorlayer/tensorlayer/blob/distributed/scripts/download_and_install_openmpi3_linux.sh
2. Update the PATH with OpenMPI bin by running: PATH=$PATH:$HOME/local/openmpi/bin
Update the PATH in ~/.bashrc if you want OpenMPI to be ready once the machine start
3. Then XXXXX Milo please add this part
mpirun -np 2 \
-bind-to none -map-by slot \
-x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH \
-mca pml ob1 -mca btl ^openib \
python3 xxxxx.py
"""
import multiprocessing
import numpy as np
import tensorflow as tf
import tensorlayer as tl
from tensorlayer.layers import (BatchNormLayer, Conv2d, DenseLayer,
FlattenLayer, InputLayer, MaxPool2d)
tf.logging.set_verbosity(tf.logging.DEBUG)
tl.logging.set_verbosity(tl.logging.DEBUG)
def make_dataset(images, labels, num_epochs=1, shuffle_data_seed=0):
img = tf.data.Dataset.from_tensor_slices(images)
lab = tf.data.Dataset.from_tensor_slices(np.array(labels, dtype=np.int64))
dataset = tf.data.Dataset.zip((img, lab))
dataset = dataset.repeat(num_epochs).shuffle(buffer_size=10000, seed=shuffle_data_seed)
return dataset
def data_aug_train(img, ann):
# 1. Randomly crop a [height, width] section of the image.
img = tf.random_crop(img, [24, 24, 3])
# 2. Randomly flip the image horizontally.
img = tf.image.random_flip_left_right(img)
# 3. Randomly change brightness.
img = tf.image.random_brightness(img, max_delta=63)
# 4. Randomly change contrast.
img = tf.image.random_contrast(img, lower=0.2, upper=1.8)
# 5. Subtract off the mean and divide by the variance of the pixels.
img = tf.image.per_image_standardization(img)
return img, ann
def data_aug_valid(img, ann):
# 1. Crop the central [height, width] of the image.
img = tf.image.resize_image_with_crop_or_pad(img, 24, 24)
# 2. Subtract off the mean and divide by the variance of the pixels.
img = tf.image.per_image_standardization(img)
return img, ann
def model(x, is_train):
with tf.variable_scope("model", reuse=tf.AUTO_REUSE):
net = InputLayer(x, name='input')
net = Conv2d(net, 64, (5, 5), (1, 1), padding='SAME', b_init=None, name='cnn1')
net = BatchNormLayer(net, decay=0.99, is_train=is_train, act=tf.nn.relu, name='batch1')
net = MaxPool2d(net, (3, 3), (2, 2), padding='SAME', name='pool1')
net = Conv2d(net, 64, (5, 5), (1, 1), padding='SAME', b_init=None, name='cnn2')
net = BatchNormLayer(net, decay=0.99, is_train=is_train, act=tf.nn.relu, name='batch2')
net = MaxPool2d(net, (3, 3), (2, 2), padding='SAME', name='pool2')
net = FlattenLayer(net, name='flatten')
net = DenseLayer(net, 384, act=tf.nn.relu, name='d1relu')
net = DenseLayer(net, 192, act=tf.nn.relu, name='d2relu')
net = DenseLayer(net, 10, act=None, name='output')
return net
def build_train(x, y_):
net = model(x, is_train=True)
cost = tl.cost.cross_entropy(net.outputs, y_, name='cost_train')
L2 = 0
for p in tl.layers.get_variables_with_name('relu/W', True, True):
L2 += tf.contrib.layers.l2_regularizer(0.004)(p)
cost = cost + L2
accurate_prediction = tf.equal(tf.argmax(net.outputs, 1), y_)
accuracy = tf.reduce_mean(tf.cast(accurate_prediction, tf.float32), name='accuracy_train')
log_tensors = {'cost': cost, 'accuracy': accuracy}
return net, cost, log_tensors
def build_validation(x, y_):
net = model(x, is_train=False)
cost = tl.cost.cross_entropy(net.outputs, y_, name='cost_test')
accurate_prediction = tf.equal(tf.argmax(net.outputs, 1), y_)
accuracy = tf.reduce_mean(tf.cast(accurate_prediction, tf.float32), name='accuracy_test')
return net, [cost, accuracy]
if __name__ == '__main__':
# Load CIFAR10 data
X_train, y_train, X_test, y_test = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3), plotable=False)
# Setup the trainer
training_dataset = make_dataset(X_train, y_train)
training_dataset = training_dataset.map(data_aug_train, num_parallel_calls=multiprocessing.cpu_count())
# validation_dataset = make_dataset(X_test, y_test)
# validation_dataset = training_dataset.map(data_aug_valid, num_parallel_calls=multiprocessing.cpu_count())
trainer = tl.distributed.Trainer(
build_training_func=build_train, training_dataset=training_dataset, optimizer=tf.train.AdamOptimizer,
optimizer_args={'learning_rate': 0.0001}, batch_size=128, prefetch_size=128
# validation_dataset=validation_dataset, build_validation_func=build_validation
)
# There are multiple ways to use the trainer:
# 1. Easiest way to train all data: trainer.train_to_end()
# 2. Train with validation in the middle: trainer.train_and_validate_to_end(validate_step_size=100)
# 3. Train with full control like follows:
while not trainer.session.should_stop():
try:
# Run a training step synchronously.
trainer.train_on_batch()
# TODO: do whatever you like to the training session.
except tf.errors.OutOfRangeError:
# The dataset would throw the OutOfRangeError when it reaches the end
break
# TODO: Test the trained model