-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathtest_layers_shape.py
133 lines (101 loc) · 4.27 KB
/
test_layers_shape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import unittest
import numpy as np
import tensorflow as tf
import tensorlayer as tl
from tests.utils import CustomTestCase
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
class Layer_Shape_Test(CustomTestCase):
@classmethod
def setUpClass(cls):
cls.data = np.random.random(size=[8, 4, 3]).astype(np.float32)
cls.imgdata = np.random.random(size=[2, 16, 16, 8]).astype(np.float32)
@classmethod
def tearDownClass(cls):
pass
def test_flatten(self):
class CustomizeModel(tl.models.Model):
def __init__(self):
super(CustomizeModel, self).__init__()
self.flatten = tl.layers.Flatten()
def forward(self, x):
return self.flatten(x)
model = CustomizeModel()
print(model.flatten)
model.train()
out = model(self.data)
self.assertEqual(out.get_shape().as_list(), [8, 12])
def test_reshape(self):
class CustomizeModel(tl.models.Model):
def __init__(self):
super(CustomizeModel, self).__init__()
self.reshape1 = tl.layers.Reshape(shape=(8, 12))
self.reshape2 = tl.layers.Reshape(shape=(-1, 12))
self.reshape3 = tl.layers.Reshape(shape=())
def forward(self, x):
return self.reshape1(x), self.reshape2(x), self.reshape3(x[0][0][0])
model = CustomizeModel()
print(model.reshape1)
print(model.reshape2)
print(model.reshape3)
model.train()
out1, out2, out3 = model(self.data)
self.assertEqual(out1.get_shape().as_list(), [8, 12])
self.assertEqual(out2.get_shape().as_list(), [8, 12])
self.assertEqual(out3.get_shape().as_list(), [])
def test_transpose(self):
class CustomizeModel(tl.models.Model):
def __init__(self):
super(CustomizeModel, self).__init__()
self.transpose1 = tl.layers.Transpose()
self.transpose2 = tl.layers.Transpose([2, 1, 0])
self.transpose3 = tl.layers.Transpose([0, 2, 1])
self.transpose4 = tl.layers.Transpose(conjugate=True)
def forward(self, x):
return self.transpose1(x), self.transpose2(x), self.transpose3(x), self.transpose4(x)
real = np.random.random([8, 4, 3]).astype(np.float32)
comp = np.random.random([8, 4, 3]).astype(np.float32)
complex_data = real + 1j * comp
model = CustomizeModel()
print(model.transpose1)
print(model.transpose2)
print(model.transpose3)
print(model.transpose4)
model.train()
out1, out2, out3, out4 = model(self.data)
self.assertEqual(out1.get_shape().as_list(), [3, 4, 8])
self.assertEqual(out2.get_shape().as_list(), [3, 4, 8])
self.assertEqual(out3.get_shape().as_list(), [8, 3, 4])
self.assertEqual(out4.get_shape().as_list(), [3, 4, 8])
self.assertTrue(np.array_equal(out1.numpy(), out4.numpy()))
out1, out2, out3, out4 = model(complex_data)
self.assertEqual(out1.get_shape().as_list(), [3, 4, 8])
self.assertEqual(out2.get_shape().as_list(), [3, 4, 8])
self.assertEqual(out3.get_shape().as_list(), [8, 3, 4])
self.assertEqual(out4.get_shape().as_list(), [3, 4, 8])
self.assertTrue(np.array_equal(np.conj(out1.numpy()), out4.numpy()))
def test_shuffle(self):
class CustomizeModel(tl.models.Model):
def __init__(self, x):
super(CustomizeModel, self).__init__()
self.shuffle = tl.layers.Shuffle(x)
def forward(self, x):
return self.shuffle(x)
model = CustomizeModel(2)
print(model.shuffle)
model.train()
out = model(self.imgdata)
self.assertEqual(out.get_shape().as_list(), [2, 16, 16, 8])
try:
model_fail = CustomizeModel(3)
print(model_fail.shuffle)
model_fail.train()
out = model_fail(self.imgdata)
self.assertEqual(out.get_shape().as_list(), [2, 16, 16, 8])
except Exception as e:
self.assertIsInstance(e, ValueError)
print(e)
if __name__ == '__main__':
unittest.main()