-
Notifications
You must be signed in to change notification settings - Fork 25
Open
Description
🎯 Updated Optimal Operation Prioritization Strategy
After filtering out removed operations, we now have 141 unique operations across 156 models.
🥇 TIER 1: Ultra-Critical (1 operation)
aten.convolution.default - 128 models (82.1%) - The core convolution operation
🥈 TIER 2: High-Value Foundation (3 operations)
- aten.view.default - 119 models (76.3%) - Tensor reshaping
- aten.add.Tensor - 114 models (73.1%) - Element-wise addition
- aten.addmm.default - 96 models (61.5%) - Matrix multiplication + bias
🏗️ TIER 3: Foundation Operations (5 operations)
- aten.relu.default - 87 models (55.8%) - ReLU activation
- aten.mean.dim - 85 models (54.5%) - Mean along dimensions
- aten.cat.default - 68 models (43.6%) - Tensor concatenation
- aten._native_batch_norm_legit_no_training.default - 65 models (41.7%) - Batch normalization
- aten.mul.Tensor - 64 models (41.0%) - Element-wise multiplication
🚀 Quick Wins Strategy (16 operations)
Target the simplest 10 models first (2-6 operations each):
- Autoencoder (linear) - 2 ops
- Autoencoder (conv) - 3 ops
- VGG models (11/13/16/19) - 5 ops each
- U-Net variants - 5-6 ops
Phase 1 operations needed for these simple models:
- aten.addmm.default
- aten.relu.default
- aten.convolution.default
- aten.max_pool2d_with_indices.default
- aten.view.default
- aten._native_batch_norm_legit_no_training.default
- Plus 10 more specialized operations listed in per-model documentation
🎯 Recommended Implementation Path:
- Start with aten.convolution.default (82% model coverage foundation)
- Add Tier 2 operations (view, add, addmm) for broad tensor manipulation support
- Implement Phase 1 set (16 ops) to unlock 10 complete simple models
- Complete Tier 3 for 40-60% model coverage
- Follow incremental strategy by operation count levels
Metadata
Metadata
Assignees
Labels
No labels