forked from AntonMu/TrainYourOwnYOLO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
351 lines (276 loc) · 11.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import colorsys
import cv2
import h5py
from keras import Model
import numpy as np
import os
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
from PIL import Image, ImageFont, ImageDraw
from timeit import default_timer as timer
# import readline
# readline.parse_and_bind("tab: complete")
min_logo_size = (10, 10)
def detect_object(yolo, img_path, save_img, save_img_path="./", postfix=""):
"""
Call YOLO logo detector on input image, optionally save resulting image.
Args:
yolo: keras-yolo3 initialized YOLO instance
img_path: path to image file
save_img: bool to save annotated image
save_img_path: path to directory where to save image
postfix: string to add to filenames
Returns:
prediction: list of bounding boxes in format (xmin,ymin,xmax,ymax,class_id,confidence)
image: unaltered input image as (H,W,C) array
"""
try:
image = Image.open(img_path)
if image.mode != "RGB":
image = image.convert("RGB")
image_array = np.array(image)
except:
print("File Open Error! Try again!")
return None, None
prediction, new_image = yolo.detect_image(image)
img_out = postfix.join(os.path.splitext(os.path.basename(img_path)))
if save_img:
new_image.save(os.path.join(save_img_path, img_out))
return prediction, image_array
def parse_input():
"""
Ask user input for input images: pass path to individual images, directory
"""
out = []
while True:
ins = input("Enter path (q to quit):").strip()
if ins in ["q", "quit"]:
break
if not os.path.exists(ins):
print("Error: file not found!")
elif os.path.isdir(ins):
out = [
os.path.abspath(os.path.join(ins, f))
for f in os.listdir(ins)
if f.endswith((".jpg", ".png"))
]
break
elif ins.endswith((".jpg", ".png")):
out.append(os.path.abspath(ins))
print(out)
return out
def load_extractor_model(model_name="InceptionV3", flavor=1):
"""Load variant of InceptionV3 or VGG16 model specified.
Args:
model_name: string, either InceptionV3 or VGG16
flavor: int specifying the model variant and input_shape.
For InceptionV3, the map is {0: default, 1: 200*200, truncate last Inception block,
2: 200*200, truncate last 2 blocks, 3: 200*200, truncate last 3 blocks, 4: 200*200}
For VGG16, it only changes the input size, {0: 224 (default), 1: 128, 2: 64}."""
start = timer()
if model_name == "InceptionV3":
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_v3 import preprocess_input
model = InceptionV3(weights="imagenet", include_top=False)
trunc_layer = [-1, 279, 248, 228, -1]
i_layer = flavor
model_out = Model(
inputs=model.inputs, outputs=model.layers[trunc_layer[i_layer]].output
)
input_shape = (299, 299, 3) if flavor == 0 else (200, 200, 3)
elif model_name == "VGG16":
from keras.applications.vgg16 import VGG16
from keras.applications.vgg16 import preprocess_input
model_out = VGG16(weights="imagenet", include_top=False)
input_length = [224, 128, 64][flavor]
input_shape = (input_length, input_length, 3)
end = timer()
print("Loaded {} feature extractor in {:.2f}sec".format(model_name, end - start))
return model_out, preprocess_input, input_shape
def chunks(l, n, preprocessing_function=None):
"""Yield successive n-sized chunks from l.
General purpose function modified for Keras: made infinite loop,
add preprocessing, returns np.array instead of list
Args:
l: iterable
n: number of items to take for each chunk
preprocessing_function: function that processes image (3D array)
Returns:
generator with n-sized np.array preprocessed chunks of the input
"""
func = (lambda x: x) if (preprocessing_function is None) else preprocessing_function
# in predict_generator, steps argument sets how many times looped through "while True"
while True:
for i in range(0, len(l), n):
yield np.array([func(el) for el in l[i : i + n]])
def load_features(filename):
"""
Load pre-saved HDF5 features for all logos in the LogosInTheWild database
"""
start = timer()
# get database features
with h5py.File(filename, "r") as hf:
brand_map = list(hf.get("brand_map"))
input_shape = list(hf.get("input_shape"))
features = hf.get("features")
features = np.array(features)
end = timer()
print(
"Loaded {} features from {} in {:.2f}sec".format(
features.shape, filename, end - start
)
)
return features, brand_map, input_shape
def save_features(filename, features, brand_map, input_shape):
"""
Save features to compressed HDF5 file for later use
"""
print("Saving {} features into {}... ".format(features.shape, filename), end="")
# reduce file size by saving as float16
features = features.astype(np.float16)
start = timer()
with h5py.File(filename, "w") as hf:
hf.create_dataset("features", data=features, compression="lzf")
hf.create_dataset("brand_map", data=brand_map)
hf.create_dataset("input_shape", data=input_shape)
end = timer()
print("done in {:.2f}sec".format(end - start))
return None
def features_from_image(img_array, model, preprocess, batch_size=100):
"""
Extract features from image array given a decapitated keras model.
Use a generator to avoid running out of memory for large inputs.
Args:
img_array: (N, H, W, C) list/array of input images
model: keras model, outputs
Returns:
features: (N, F) array of 1D features
"""
if len(img_array) == 0:
return np.array([])
steps = len(img_array) // batch_size + 1
img_gen = chunks(img_array, batch_size, preprocessing_function=preprocess)
features = model.predict_generator(img_gen, steps=steps)
# if the generator has looped past end of array, cut it down
features = features[: len(img_array)]
# reshape features: flatten last three dimensions to one
features = features.reshape(features.shape[0], np.prod(features.shape[1:]))
return features
##################################################
# image processing and bounding box functions
##################################################
def pad_image(img, shape, mode="constant_mean"):
"""
Resize and pad image to given size.
Args:
img: (H, W, C) input numpy array
shape: (H', W') destination size
mode: filling mode for new padded pixels. Default = 'constant_mean' returns
grayscale padding with pixel intensity equal to mean of the array. Other
options include np.pad() options, such as 'edge', 'mean' (by row/column)...
Returns:
new_im: (H', W', C) padded numpy array
"""
if mode == "constant_mean":
mode_args = {"mode": "constant", "constant_values": np.mean(img)}
else:
mode_args = {"mode": mode}
ih, iw = img.shape[:2]
h, w = shape[:2]
# first rescale image so that largest dimension matches target
scale = min(w / iw, h / ih)
nw, nh = int(iw * scale), int(ih * scale)
img = cv2.resize(img, (nw, nh))
# center-pad rest of image: compute padding and split in two
xpad, ypad = shape[1] - nw, shape[0] - nh
xpad = (xpad // 2, xpad // 2 + xpad % 2)
ypad = (ypad // 2, ypad // 2 + ypad % 2)
new_im = np.pad(img, pad_width=(ypad, xpad, (0, 0)), **mode_args)
return new_im
def bbox_colors(n):
"""
Define n distinct bounding box colors
Args:
n: number of colors
Returns:
colors: (n, 3) np.array with RGB integer values in [0-255] range
"""
hsv_tuples = [(x / n, 1.0, 1.0) for x in range(n)]
colors = 255 * np.array([colorsys.hsv_to_rgb(*x) for x in hsv_tuples])
np.random.seed(10101) # Fixed seed for consistent colors across runs.
np.random.shuffle(colors) # Shuffle colors to decorrelate adjacent classes.
np.random.seed(None) # Reset seed to default.
return colors.astype(int)
def contents_of_bbox(img, bbox_list, expand=1.0):
"""
Extract portions of image inside bounding boxes list.
Args:
img: (H,W,C) image array
bbox_list: list of bounding box specifications, with first 4 elements
specifying box corners in (xmin, ymin, xmax, ymax) format.
Returns:
candidates: list of 3D image arrays
i_candidates_too_small: list of indices of small candidates dropped
"""
candidates = []
i_candidates_too_small = []
for i, (xmin, ymin, xmax, ymax, *_) in enumerate(bbox_list):
# for very low confidence sometimes logos found outside of the image
if ymin > img.shape[0] or xmin > img.shape[1]:
continue
xmin, ymin = int(xmin // expand), int(ymin // expand)
xmax, ymax = int(np.round(xmax // expand)), int(np.round(ymax // expand))
# do not even consider tiny logos
if xmax - xmin > min_logo_size[1] and ymax - ymin > min_logo_size[0]:
candidates.append(img[ymin:ymax, xmin:xmax])
else:
i_candidates_too_small.append(i)
return candidates, i_candidates_too_small
def draw_annotated_box(image, box_list_list, label_list, color_list):
"""
Draw box and overhead label on image.
Args:
image: PIL image object
box_list_list: list of lists of bounding boxes, one for each label, each box in
(xmin, ymin, xmax, ymax [, score]) format (where score is an optional float)
label_list: list of string to go above box
color_list: list of RGB tuples
Returns:
image: annotated PIL image object
"""
font_path = os.path.join(
os.path.dirname(__file__), "keras_yolo3/font/FiraMono-Medium.otf"
)
font = ImageFont.truetype(
font=font_path, size=np.floor(3e-2 * image.size[1] + 0.5).astype("int32")
)
thickness = (image.size[0] + image.size[1]) // 300
draw = ImageDraw.Draw(image)
for box_list, label, color in zip(box_list_list, label_list, color_list):
if not isinstance(color, tuple):
color = tuple(color)
for box in box_list:
# deal with empty predictions
if len(box) < 4:
continue
# if score is also passed, append to label
thelabel = "{}".format(label)
if len(box) > 4:
thelabel += " {:.2f}".format(box[-1])
label_size = draw.textsize(thelabel, font)
xmin, ymin, xmax, ymax = box[:4]
ymin = max(0, np.floor(ymin + 0.5).astype("int32"))
xmin = max(0, np.floor(xmin + 0.5).astype("int32"))
ymax = min(image.size[1], np.floor(ymax + 0.5).astype("int32"))
xmax = min(image.size[0], np.floor(xmax + 0.5).astype("int32"))
if ymin - label_size[1] >= 0:
text_origin = np.array([xmin, ymin - label_size[1]])
else:
text_origin = np.array([xmin, ymax])
for i in range(thickness):
draw.rectangle([xmin + i, ymin + i, xmax - i, ymax - i], outline=color)
draw.rectangle(
[tuple(text_origin), tuple(text_origin + label_size)], fill=color
)
draw.text(text_origin, thelabel, fill=(0, 0, 0), font=font)
del draw
return image