forked from CompVis/stable-diffusion
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmultibuild.py
366 lines (311 loc) · 15.6 KB
/
multibuild.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import random
import os
import time
import torch
import numpy as np
import shutil
import PIL
from PIL import Image
from einops import rearrange, repeat
from torch import autocast
from diffusers import StableDiffusionPipeline
import webbrowser
from deep_translator import GoogleTranslator
from langdetect import detect
from joblib import Parallel, delayed
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
model_id = "CompVis/stable-diffusion-v1-4"
#device = "cuda"
device = "mps" #torch.device("mps")
white = (255, 255, 255)
green = (0, 255, 0)
darkgreen = (0, 128, 0)
red = (255, 0, 0)
blue = (0, 0, 128)
black = (0, 0, 0)
os.environ["skl"] = "nn"
os.environ["epsilon"] = "0.005"
os.environ["decay"] = "0."
os.environ["ngoptim"] = "DiscreteLenglerOnePlusOne"
os.environ["forcedlatent"] = ""
latent_forcing = ""
#os.environ["enforcedlatent"] = ""
os.environ["good"] = "[]"
os.environ["bad"] = "[]"
num_iterations = 50
gs = 7.5
voronoi_in_images = True
import pyttsx3
noise = pyttsx3.init()
noise.setProperty("rate", 240)
noise.setProperty('voice', 'mb-us1')
#voice = noise.getProperty('voices')
#for v in voice:
# if v.name == "Kyoko":
# noise.setProperty('voice', v.id)
all_selected = []
all_selected_latent = []
final_selection = []
forcedlatents = []
forcedgs = []
pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token="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")
pipe = pipe.to(device)
prompt = "a photo of an astronaut riding a horse on mars"
prompt = "a photo of a red panda with a hat playing table tennis"
prompt = "a photorealistic portrait of " + random.choice(["Mary Cury", "Scarlett Johansson", "Marilyn Monroe", "Poison Ivy", "Black Widow", "Medusa", "Batman", "Albert Einstein", "Louis XIV", "Tarzan"]) + random.choice([" with glasses", " with a hat", " with a cigarette", "with a scarf"])
prompt = "a photorealistic portrait of " + random.choice(["Nelson Mandela", "Superman", "Superwoman", "Volodymyr Zelenskyy", "Tsai Ing-Wen", "Lzzy Hale", "Meg Myers"]) + random.choice([" with glasses", " with a hat", " with a cigarette", "with a scarf"])
prompt = random.choice(["A woman with three eyes", "Meg Myers", "The rock band Ankor", "Miley Cyrus", "The man named Rahan", "A murder", "Rambo playing table tennis"])
prompt = "Photo of a female Terminator."
prompt = random.choice([
"Photo of Tarzan as a lawyer with a tie",
"Photo of Scarlett Johansson as a sumo-tori",
"Photo of the little mermaid as a young black girl",
"Photo of Schwarzy with tentacles",
"Photo of Meg Myers with an Egyptian dress",
"Photo of Schwarzy as a ballet dancer",
])
name = random.choice(["Mark Zuckerbeg", "Zendaya", "Yann LeCun", "Scarlett Johansson", "Superman", "Meg Myers"])
name = "Zendaya"
prompt = f"Photo of {name} as a sumo-tori."
prompt = "Full length portrait of Mark Zuckerberg as a Sumo-Tori."
prompt = "Full length portrait of Scarlett Johansson as a Sumo-Tori."
prompt = "A close up photographic portrait of a young woman with uniformly colored hair."
prompt = "Zombies raising and worshipping a flying human."
prompt = "Zombies trying to kill Meg Myers."
prompt = "Meg Myers with an Egyptian dress killing a vampire with a gun."
prompt = "Meg Myers grabbing a vampire by the scruff of the neck."
prompt = "Mark Zuckerberg chokes a vampire to death."
prompt = "Mark Zuckerberg riding an animal."
prompt = "A giant cute animal worshipped by zombies."
prompt = "Several faces."
prompt = "An armoured Yann LeCun fighting tentacles in the jungle."
prompt = "Tentacles everywhere."
prompt = "A photo of a smiling Medusa."
prompt = "Medusa."
prompt = "Meg Myers in bloody armor fending off tentacles with a sword."
prompt = "A red-haired woman with red hair. Her head is tilted."
prompt = "A bloody heavy-metal zombie with a chainsaw."
prompt = "Tentacles attacking a bloody Meg Myers in Eyptian dress. Meg Myers has a chainsaw."
prompt = "Bizarre art."
prompt = "Beautiful bizarre woman."
prompt = "Yann LeCun as the grim reaper: bizarre art."
prompt = "A star with flashy colors."
prompt = "Un chat en sang et en armure joue de la batterie."
prompt = "Photo of a cyberpunk Mark Zuckerberg killing Cthulhu with a light saber."
prompt = "A ferocious cyborg bear."
prompt = "Photo of Mark Zuckerberg killing Cthulhu with a light saber."
prompt = "A bear with horns and blood and big teeth."
prompt = "A photo of a bear and Yoda, good friends."
prompt = "A photo of Yoda on the left, a blue octopus on the right, an explosion in the center."
prompt = "A bird is on a hippo. They fight a black and red octopus. Jungle in the background."
prompt = "A flying white owl above 4 colored pots with fire. The owl has a hat."
prompt = "A flying white owl above 4 colored pots with fire."
prompt = "Yann LeCun rides a dragon which spits fire on a cherry on a cake."
prompt = "An armored Mark Zuckerberg fighting off a monster with bloody tentacles in the jungle with a light saber."
prompt = "Cute woman, portrait, photo, red hair, green eyes, smiling."
prompt = "Photo of Tarzan as a lawyer with a tie and an octopus on his head."
prompt = "An armored bloody Yann Lecun has a lightsabar and fights a red tentacular monster."
prompt = "Photo of a giant armored insect attacking a building. The building is broken. There are flames."
prompt = "Photo of Meg Myers, on the left, in Egyptian dress, fights Cthulhu (on the right) with a light saber. They stare at each other."
prompt = "Photo of a cute red panda."
prompt = "Photo of a cute smiling white-haired woman with pink eyes."
prompt = "A muscular Jesus with and assault rifle, a cap and and a light saber."
prompt = "A portrait of a cute smiling woman."
prompt = "A woman with black skin, red hair, egyptian dress, yellow eyes."
prompt = "Photo of a young cute black woman."
prompt = "Photo of a woman with cyborg implants."
prompt = "Photo of a man and a woman. Cats and drums and computers on shelves in the background."
prompt = "A 40yo smiling woman."
prompt = "Close-up portrait of a woman with dyed hair."
prompt = np.random.choice(["A cute monster.", "A cyberpunk man.", "A cyberpunk woman", "Cleopatra behading a panda."])
print(f"The prompt is {prompt}")
import pyfiglet
print(pyfiglet.figlet_format("Welcome in Genetic Stable Diffusion !"))
print(pyfiglet.figlet_format("First, let us choose the text :-)!"))
print(f"Francais: Proposez un nouveau texte si vous ne voulez pas dessiner << {prompt} >>.\n")
noise.say("Hey!")
noise.runAndWait()
user_prompt = "" #input(f"English: Enter a new prompt if you prefer something else than << {prompt} >>.\n")
if len(user_prompt) > 2:
prompt = user_prompt
# On the fly translation.
language = detect(prompt)
english_prompt = GoogleTranslator(source='auto', target='en').translate(prompt)
def to_native(stri):
return GoogleTranslator(source='en', target=language).translate(stri)
def pretty_print(stri):
print(pyfiglet.figlet_format(to_native(stri)))
print(f"{to_native('Working on')} {english_prompt}, a.k.a {prompt}.")
def latent_to_image(latent,gs,num_iterations):
os.environ["forcedlatent"] = str(list(latent.flatten())) #str(list(forcedlatents[k].flatten()))
with autocast("cuda"):
image = pipe(english_prompt, guidance_scale=gs, num_inference_steps=num_iterations)["sample"][0]
return image
import torch
from PIL import Image
from RealESRGAN import RealESRGAN
sr_device = torch.device('cpu') #device #('mps') #torch.device('cuda' if torch.cuda.is_available() else 'cpu')
esrmodel = RealESRGAN(sr_device, scale=4)
esrmodel.load_weights('weights/RealESRGAN_x4.pth', download=True)
esrmodel2 = RealESRGAN(sr_device, scale=2)
esrmodel2.load_weights('weights/RealESRGAN_x2.pth', download=True)
def singleeg(path_to_image):
image = Image.open(path_to_image).convert('RGB')
sr_device = device #('mps') #torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Type before SR = {type(image)}")
sr_image = esrmodel.predict(image)
print(f"Type after SR = {type(sr_image)}")
output_filename = path_to_image + ".SR.png"
sr_image.save(output_filename)
return output_filename
def singleeg2(path_to_image):
time.sleep(0.5*np.random.rand())
image = Image.open(path_to_image).convert('RGB')
sr_device = device #('mps') #torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Type before SR = {type(image)}")
sr_image = esrmodel2.predict(image)
print(f"Type after SR = {type(sr_image)}")
output_filename = path_to_image + ".SR.png"
sr_image.save(output_filename)
return output_filename
def eg(list_of_files):
pretty_print("Should I convert images below to high resolution ?")
print(list_of_files)
noise.say("Go to the text window!")
noise.runAndWait()
answer = input(" [y]es / [n]o ?")
if "y" in answer or "Y" in answer:
#images = Parallel(n_jobs=12)(delayed(singleeg)(image) for image in list_of_files)
#print(to_native(f"Created the super-resolution files {images}"))
for path_to_image in list_of_files:
output_filename = singleeg(path_to_image)
print(to_native(f"Created the super-resolution file {output_filename}"))
def stop_all(list_of_files, list_of_latent, last_list_of_latent):
print(to_native("Your selected images and the last generation:"))
print(list_of_files)
eg(list_of_files)
pretty_print("Should we create animations ?")
answer = input(" [y]es or [n]o or [j]ust the selection on the last panel ?")
if "y" in answer or "Y" in answer or "j" in answer or "J" in answer:
assert len(list_of_files) == len(list_of_latent)
if "j" in answer or "J" in answer:
list_of_latent = last_list_of_latent
pretty_print("Let us create animations!")
for c in sorted([0.5, 0.25, 0.125, 0.0625, 0.05, 0.04,0.03125]):
for idx in range(len(list_of_files)):
images = []
l = list_of_latent[idx].reshape(1,4,64,64)
l = np.sqrt(len(l.flatten()) / np.sum(l**2)) * l
l1 = l + c * np.random.randn(len(l.flatten())).reshape(1,4,64,64)
l1 = np.sqrt(len(l1.flatten()) / np.sum(l1**2)) * l1
l2 = l + c * np.random.randn(len(l.flatten())).reshape(1,4,64,64)
l2 = np.sqrt(len(l2.flatten()) / np.sum(l2**2)) * l2
num_animation_steps = 13
index = 0
for u in np.linspace(0., 2*3.14159 * (1-1/30), 30):
cc = np.cos(u)
ss = np.sin(u*2)
index += 1
image = latent_to_image(l + cc * (l1 - l) + ss * (l2 - l))
image_name = f"imgA{index}.png"
image.save(image_name)
images += [image_name]
# for u in np.linspace(0., 1., num_animation_steps):
# index += 1
# image = latent_to_image(u*l1 + (1-u)*l)
# image_name = f"imgA{index}.png"
# image.save(image_name)
# images += [image_name]
# for u in np.linspace(0., 1., num_animation_steps):
# index += 1
# image = latent_to_image(u*l2 + (1-u)*l1)
# image_name = f"imgB{index}.png"
# image.save(image_name)
# images += [image_name]
# for u in np.linspace(0., 1.,num_animation_steps):
# index += 1
# image = latent_to_image(u*l + (1-u)*l2)
# image_name = f"imgC{index}.png"
# image.save(image_name)
# images += [image_name]
print(to_native(f"Base images created for perturbation={c} and file {list_of_files[idx]}"))
#images = Parallel(n_jobs=8)(delayed(process)(i) for i in range(10))
images = Parallel(n_jobs=10)(delayed(singleeg2)(image) for image in images)
frames = [Image.open(image) for image in images]
frame_one = frames[0]
gif_name = list_of_files[idx] + "_" + str(c) + ".gif"
frame_one.save(gif_name, format="GIF", append_images=frames,
save_all=True, duration=100, loop=0)
webbrowser.open(os.environ["PWD"] + "/" + gif_name)
pretty_print("Should we create a meme ?")
answer = input(" [y]es or [n]o ?")
if "y" in answer or "Y" in answer:
url = 'https://imgflip.com/memegenerator'
webbrowser.open(url)
pretty_print("Good bye!")
exit()
import os
from os import listdir
from os.path import isfile, join
sentinel = str(random.randint(0,100000)) + "XX" + str(random.randint(0,100000))
all_files = []
llambda = 15
bad = []
five_best = []
latent = []
images = []
onlyfiles = []
pretty_print("Now let us choose (if you want) an image as a start.")
#image_name = input(to_native("Name of image for starting ? (enter if no start image)"))
def load_img(path):
image = Image.open(path).convert("RGB")
w, h = image.size
print(to_native(f"loaded input image of size ({w}, {h}) from {path}"))
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = image.resize((512, 512), resample=PIL.Image.LANCZOS)
#image = image.resize((w, h), resample=PIL.Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.*image - 1.
model = pipe.vae
def img_to_latent(path):
init_image = load_img(path)
init_image = init_image.to(device)
init_image = repeat(init_image, '1 ... -> b ...', b=1)
forced_latent = model.encode(init_image.to(device)).latent_dist.sample()
new_fl = forced_latent.cpu().detach().numpy().flatten()
new_fl = np.sqrt(len(new_fl)) * new_fl / np.sqrt(np.sum(new_fl ** 2))
return new_fl
image_name = "SelectedSD_Photo_of_a_young_cute_black_woman._image_30106XX76830_00000_00000.png"
image_name = "cyb.jpeg"
image_name = "ln.png"
def randomized_image_to_latent(image_name, scale=None, epsilon=None, c=None, f=None):
base_init_image = load_img(image_name).to(device)
new_base_init_image = base_init_image
c = np.exp(np.random.randn()) if c is None else c
f = np.exp(-3. * np.random.rand()) if f is None else f
init_image_shape = base_init_image.cpu().numpy().shape
init_image = c * new_base_init_image
init_image = repeat(init_image, '1 ... -> b ...', b=1)
forced_latent = 1. * model.encode(init_image.to(device)).latent_dist.sample()
new_fl = forced_latent.cpu().detach().numpy().flatten()
basic_new_fl = new_fl #np.sqrt(len(new_fl) / sum(new_fl ** 2)) * new_fl
basic_new_fl = f * np.sqrt(len(new_fl) / np.sum(basic_new_fl**2)) * basic_new_fl
epsilon = 0.1 * np.exp(-3 * np.random.rand()) if epsilon is None else epsilon
new_fl = (1. - epsilon) * basic_new_fl + epsilon * np.random.randn(1*4*64*64)
scale = 2.8 + 3.6 * np.random.rand() if scale is None else scale
new_fl = scale * np.sqrt(len(new_fl)) * new_fl / np.sqrt(np.sum(new_fl ** 2))
gs = np.random.rand()*50.
num_iterations = np.random.choice([10,20, 40, 80, 160])
image = latent_to_image(np.asarray(new_fl), gs, num_iterations) #eval(os.environ["forcedlatent"])))
image.save(f"ln3_rebuild_ni{num_iterations}_gs{gs}_f{f}_scale{scale}_epsilon{epsilon}_c{c}.png")
return new_fl
for i in range(1000,1200):
latent =np.random.randn(4*64*64)
str_latent = str(list(latent))
filename=f"build{i}_{prompt.replace(' ', '_')}.png"
print(f"Creating {filename}")
latent_to_image(latent, 7.5, num_iterations=50).save(filename)
with open(filename + ".latent.txt", 'w') as f:
f.write(f"{str_latent}")