@@ -193,7 +193,7 @@ def yolo_eval(yolo_outputs,
193
193
iou_threshold = .5 ):
194
194
"""Evaluate YOLO model on given input and return filtered boxes."""
195
195
num_layers = len (yolo_outputs )
196
- anchor_mask = [[6 ,7 ,8 ], [3 ,4 ,5 ], [0 ,1 ,2 ]] if num_layers == 3 else [[3 ,4 ,5 ], [1 ,2 , 3 ]] # default setting
196
+ anchor_mask = [[6 ,7 ,8 ], [3 ,4 ,5 ], [0 ,1 ,2 ]] if num_layers == 3 else [[3 ,4 ,5 ], [0 , 1 ,2 ]] # default setting
197
197
input_shape = K .shape (yolo_outputs [0 ])[1 :3 ] * 32
198
198
boxes = []
199
199
box_scores = []
@@ -247,7 +247,7 @@ def preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes):
247
247
'''
248
248
assert (true_boxes [..., 4 ]< num_classes ).all (), 'class id must be less than num_classes'
249
249
num_layers = len (anchors )// 3 # default setting
250
- anchor_mask = [[6 ,7 ,8 ], [3 ,4 ,5 ], [0 ,1 ,2 ]] if num_layers == 3 else [[3 ,4 ,5 ], [1 ,2 , 3 ]]
250
+ anchor_mask = [[6 ,7 ,8 ], [3 ,4 ,5 ], [0 ,1 ,2 ]] if num_layers == 3 else [[3 ,4 ,5 ], [0 , 1 ,2 ]]
251
251
252
252
true_boxes = np .array (true_boxes , dtype = 'float32' )
253
253
input_shape = np .array (input_shape , dtype = 'int32' )
@@ -361,7 +361,7 @@ def yolo_loss(args, anchors, num_classes, ignore_thresh=.5, print_loss=False):
361
361
num_layers = len (anchors )// 3 # default setting
362
362
yolo_outputs = args [:num_layers ]
363
363
y_true = args [num_layers :]
364
- anchor_mask = [[6 ,7 ,8 ], [3 ,4 ,5 ], [0 ,1 ,2 ]] if num_layers == 3 else [[3 ,4 ,5 ], [1 ,2 , 3 ]]
364
+ anchor_mask = [[6 ,7 ,8 ], [3 ,4 ,5 ], [0 ,1 ,2 ]] if num_layers == 3 else [[3 ,4 ,5 ], [0 , 1 ,2 ]]
365
365
input_shape = K .cast (K .shape (yolo_outputs [0 ])[1 :3 ] * 32 , K .dtype (y_true [0 ]))
366
366
grid_shapes = [K .cast (K .shape (yolo_outputs [l ])[1 :3 ], K .dtype (y_true [0 ])) for l in range (num_layers )]
367
367
loss = 0
0 commit comments