forked from ucsd-progsys/liquidhaskell
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLambdaEval.hs
165 lines (133 loc) · 4.27 KB
/
LambdaEval.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
{-@ LIQUID "--no-termination" @-}
module LambdaEval () where
import Data.List (lookup)
import Language.Haskell.Liquid.Prelude
---------------------------------------------------------------------
----------------------- Datatype Definition -------------------------
---------------------------------------------------------------------
import Prelude hiding (error)
{-@ error :: a -> b @-}
error :: a -> b
error x = error x
type Bndr
= Int
data Expr
= Lam Bndr Expr
| Var Bndr
| App Expr Expr
| Const Int
| Plus Expr Expr
| Pair Expr Expr
| Fst Expr
| Snd Expr
{-@
data Expr
= Lam { eX :: Bndr, eBody :: Expr }
| Var { eX :: Bndr }
| App { eL :: Expr, eR :: Expr }
| Const { eN :: Int }
| Plus { eL :: Expr, eR :: Expr }
| Pair { eL :: Expr, eR :: Expr }
| Fst { eL :: Expr }
| Snd { eL :: Expr }
@-}
{-@ measure elen :: (Expr) -> Int
elen(Lam x e) = 1 + (elen e)
elen(Var x) = 0
elen(App e1 e2) = 1 + (elen e1) + (elen e2)
elen(Const i) = 1
elen(Plus e1 e2) = 1 + (elen e1) + (elen e2)
elen(Pair e1 e2) = 1 + (elen e1) + (elen e2)
elen(Fst e) = 1 + (elen e)
elen(Snd e) = 1 + (elen e)
@-}
{-@ invariant {v:Expr | (elen v) >= 0} @-}
{-@
measure isValue :: Expr -> Bool
isValue (Const i) = true
isValue (Lam x e) = true
isValue (Var x) = false
isValue (App e1 e2) = false
isValue (Plus e1 e2) = false
isValue (Fst e) = false
isValue (Snd e) = false
isValue (Pair e1 e2) = (isValue e1) && (isValue e2)
@-}
{-@ type Value = {v: Expr | isValue v } @-}
---------------------------------------------------------------------
-------------------------- The Evaluator ----------------------------
---------------------------------------------------------------------
{-@ decrease evalVar 2 @-}
evalVar :: Bndr -> [(Bndr, Expr)] -> Expr
evalVar x ((y,v):sto)
| x == y
= v
| otherwise
= evalVar x sto
evalVar x []
= error "unbound variable"
{-@ decrease eval 2 @-}
{-@ eval :: [(Bndr, Value)] -> Expr -> ([(Bndr, Value)], Value) @-}
eval sto (Const i)
= (sto, Const i)
eval sto (Var x)
= (sto, evalVar x sto)
eval sto (Plus e1 e2)
= let (_, e1') = eval sto e1
(_, e2') = eval sto e2
in case (e1, e2) of
(Const i1, Const i2) -> (sto, Const (i1 + i2))
_ -> error "non-integer addition"
eval sto (App e1 e2)
= let (_, v2 ) = eval sto e2
(sto1, e1') = eval sto e1
in case e1' of
(Lam x e) -> eval ((x, v2): sto1) e
_ -> error "non-function application"
eval sto (Lam x e)
= (sto, Lam x e)
eval sto (Pair e1 e2)
= (sto, Pair v1 v2)
where (_, v1) = eval sto e1
(_, v2) = eval sto e2
eval sto (Fst e)
= let (sto', e') = eval sto e in
case e' of
Pair v _ -> (sto', v)
_ -> error "non-tuple fst"
eval sto (Snd e)
= let (sto', e') = eval sto e in
case e' of
Pair _ v -> (sto', v)
_ -> error "non-tuple snd"
---------------------------------------------------------------------
-------------------------- Value Checker ----------------------------
---------------------------------------------------------------------
{-@ assert check :: {v: Expr | isValue v } -> Bool @-}
check (Const _) = True
check (Lam _ _) = True
check (Var _) = liquidAssertB False
check (App _ _) = liquidAssertB False
check (Pair v1 v2) = check v1 && check v2
check (Fst _) = liquidAssertB False
check (Snd _) = liquidAssertB False
check (Plus _ _) = liquidAssertB False
---------------------------------------------------------------------
-------------------------- Unit Tests -------------------------------
---------------------------------------------------------------------
{-
tests =
let (f,g,x) = (0,1,2)
e1 = Lam x (Var x)
e2 = App e1 e1
e3 = Lam f (Lam g (Lam x (App (Var f) (App (Var g) (Var x)))))
e4 = Const 10
e5 = App e1 e4
e6 = Lam x (Plus (Var x) e4)
e7 = App (App e3 e6) e6
e8 = Pair (App e7 (Const 0)) (App e7 (Const 100))
e9 = Fst e8
e10 = Snd e9
vs = map (snd . eval []) [e1, e2, e3, e4, e5, e6, e7, e8, e9, e10]
in map check vs
-}