|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Feature selection\n", |
| 8 | + "\n", |
| 9 | + "What is feature selection?\n", |
| 10 | + "\n", |
| 11 | + "* Feature or variable selection is the process of selecting a subset of relevant features from a total features available in a dataset to build ML algorithms.\n", |
| 12 | + "\n", |
| 13 | + "Why should we select features?\n", |
| 14 | + "\n", |
| 15 | + "* Its easy to understand the output which uses 10 variables as compare to 100 variables. Thus, simple models are easier to interpret.\n", |
| 16 | + "* Shorter training times.\n", |
| 17 | + "* Reduce the risk of data errors during model use.\n", |
| 18 | + "* Reduce the variable redundancy. Exclude co-related variables.\n", |
| 19 | + "* Bad learning behaviour in high dimensional space." |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "markdown", |
| 24 | + "metadata": {}, |
| 25 | + "source": [ |
| 26 | + "## Feature selection methods\n", |
| 27 | + "\n", |
| 28 | + "1. Filter methods\n", |
| 29 | + "2. Wrapper methods\n", |
| 30 | + "3. Embedded methods" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "markdown", |
| 35 | + "metadata": {}, |
| 36 | + "source": [ |
| 37 | + "### Wrapper methods\n", |
| 38 | + "\n", |
| 39 | + "* Use predictive ML models to score the feature subset.\n", |
| 40 | + "* Train a new model on each feature subset.\n", |
| 41 | + "* Tend to be very computationally expensive.\n", |
| 42 | + "* They may not produce the best feature combination for a different ML model.\n" |
| 43 | + ] |
| 44 | + }, |
| 45 | + { |
| 46 | + "cell_type": "markdown", |
| 47 | + "metadata": {}, |
| 48 | + "source": [ |
| 49 | + "### Embedded methods\n", |
| 50 | + "\n", |
| 51 | + "* Perform feature selection as part of the model construction process.\n", |
| 52 | + "* Consider the interaction between features and models.\n", |
| 53 | + "* They are less computationally expensive than wrapper methods, because they fit the ML model only once." |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "code", |
| 58 | + "execution_count": null, |
| 59 | + "metadata": {}, |
| 60 | + "outputs": [], |
| 61 | + "source": [] |
| 62 | + } |
| 63 | + ], |
| 64 | + "metadata": { |
| 65 | + "kernelspec": { |
| 66 | + "display_name": "Python 3", |
| 67 | + "language": "python", |
| 68 | + "name": "python3" |
| 69 | + }, |
| 70 | + "language_info": { |
| 71 | + "codemirror_mode": { |
| 72 | + "name": "ipython", |
| 73 | + "version": 3 |
| 74 | + }, |
| 75 | + "file_extension": ".py", |
| 76 | + "mimetype": "text/x-python", |
| 77 | + "name": "python", |
| 78 | + "nbconvert_exporter": "python", |
| 79 | + "pygments_lexer": "ipython3", |
| 80 | + "version": "3.6.0" |
| 81 | + } |
| 82 | + }, |
| 83 | + "nbformat": 4, |
| 84 | + "nbformat_minor": 2 |
| 85 | +} |
0 commit comments