-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprediction.py
53 lines (40 loc) · 1.15 KB
/
prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Dec 30 20:33:15 2018
@author: thebbennett
"""
from keras.models import load_model
from keras.optimizers import Adam
from keras.preprocessing import image
import numpy as np
import os
import glob
### Predicting on all images
folder_path = '/home/thebbennett/rooftopNN/data/predict/*.jpg'
# path to model
model_path = '/home/thebbennett/rooftopNN/model.h5'
# dimensions of images
img_width, img_height = 256,256
# load the trained model
model = load_model(model_path)
model.compile(loss='binary_crossentropy',
optimizer= 'Adam',
metrics=['accuracy', 'mae'])
# load all images into a list
img_name_list=glob.glob(folder_path)
images = []
for img in img_name_list:
img = image.load_img(img, target_size=(img_width, img_height))
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
images.append(img)
# stack up images list to pass for prediction
images = np.vstack(images)
classes = model.predict(images, batch_size=10)
sums = []
for image in classes:
b = image > 0.5
sums.append(len(image[b]))
pixels = sum(sums)
pixels * (5280/256)