-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest_mixins.py
141 lines (124 loc) · 5.92 KB
/
test_mixins.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from typing import Mapping, Optional, Tuple
import pytest
import numpy as np
import pandas as pd
from anndata import AnnData
from moscot.problems.cross_modality import TranslationProblem
from tests._utils import MockSolverOutput
class TestCrossModalityTranslationAnalysisMixin:
@pytest.mark.parametrize(
"src_attr", ["emb_src", {"attr": "obsm", "key": "emb_src"}, {"attr": "layers", "key": "counts"}]
)
@pytest.mark.parametrize(
"tgt_attr", ["emb_tgt", {"attr": "obsm", "key": "emb_tgt"}, {"attr": "layers", "key": "counts"}]
)
@pytest.mark.parametrize("joint_attr", [None, "X_pca", {"attr": "obsm", "key": "X_pca"}])
def test_translation_foo(
self,
adata_translation_split: Tuple[AnnData, AnnData],
src_attr: Mapping[str, str],
tgt_attr: Mapping[str, str],
joint_attr: Optional[Mapping[str, str]],
):
adata_src, adata_tgt = adata_translation_split
expected_keys = {(i, "ref") for i in adata_src.obs["batch"].cat.categories}
tp = (
TranslationProblem(adata_src, adata_tgt)
.prepare(batch_key="batch", src_attr=src_attr, tgt_attr=tgt_attr, joint_attr=joint_attr)
.solve()
)
for src, tgt in expected_keys:
trans_forward = tp.translate(source=src, target=tgt, forward=True)
assert trans_forward.shape == tp[src, tgt].y.data_src.shape
trans_backward = tp.translate(source=src, target=tgt, forward=False)
assert trans_backward.shape == tp[src, tgt].x.data_src.shape
@pytest.mark.parametrize("src_attr", ["emb_src", {"attr": "obsm", "key": "emb_src"}])
@pytest.mark.parametrize("tgt_attr", ["emb_tgt", {"attr": "obsm", "key": "emb_tgt"}])
@pytest.mark.parametrize("alternative_attr", ["X_pca", {"attr": "obsm", "key": "X_pca"}])
def test_translate_alternative(
self,
adata_translation_split: Tuple[AnnData, AnnData],
src_attr: Mapping[str, str],
tgt_attr: Mapping[str, str],
alternative_attr: Optional[Mapping[str, str]],
):
adata_src, adata_tgt = adata_translation_split
expected_keys = {(i, "ref") for i in adata_src.obs["batch"].cat.categories}
tp = (
TranslationProblem(adata_src, adata_tgt)
.prepare(batch_key="batch", src_attr=src_attr, tgt_attr=tgt_attr, joint_attr=None)
.solve()
)
for src, tgt in expected_keys:
trans_forward = tp.translate(source=src, target=tgt, forward=True, alternative_attr=alternative_attr)
assert trans_forward.shape == adata_tgt.obsm["X_pca"].shape
trans_backward = tp.translate(source=src, target=tgt, forward=False, alternative_attr=alternative_attr)
assert trans_backward.shape == adata_src[adata_src.obs["batch"] == "1"].obsm["X_pca"].shape
@pytest.mark.fast()
@pytest.mark.parametrize("forward", [True, False])
@pytest.mark.parametrize("normalize", [True, False])
def test_cell_transition_pipeline(
self, adata_translation_split: Tuple[AnnData, AnnData], forward: bool, normalize: bool
):
rng = np.random.RandomState(0)
adata_src, adata_tgt = adata_translation_split
tp = TranslationProblem(adata_src, adata_tgt)
tp = tp.prepare(batch_key="batch", src_attr="emb_src", tgt_attr="emb_tgt", joint_attr="X_pca")
mock_tmap_1 = np.abs(rng.randn(len(adata_src[adata_src.obs["batch"] == "1"]), len(adata_tgt)))
mock_tmap_2 = np.abs(rng.randn(len(adata_src[adata_src.obs["batch"] == "2"]), len(adata_tgt)))
solution = MockSolverOutput(mock_tmap_1 / np.sum(mock_tmap_1))
tp["1", "ref"].set_solution(solution, overwrite=True)
solution = MockSolverOutput(mock_tmap_2 / np.sum(mock_tmap_2))
tp["2", "ref"].set_solution(solution, overwrite=True)
result1 = tp.cell_transition(
source="1",
source_groups="celltype",
target_groups="celltype",
forward=forward,
normalize=normalize,
)
result2 = tp.cell_transition(
source="2",
source_groups="celltype",
target_groups="celltype",
forward=forward,
normalize=normalize,
)
assert isinstance(result1, pd.DataFrame)
assert result1.shape == (3, 3)
assert isinstance(result2, pd.DataFrame)
assert result2.shape == (3, 3)
with pytest.raises(AssertionError):
pd.testing.assert_frame_equal(result1, result2)
@pytest.mark.fast()
@pytest.mark.parametrize("forward", [True, False])
@pytest.mark.parametrize("mapping_mode", ["max", "sum"])
@pytest.mark.parametrize("batch_size", [3, 7, None])
@pytest.mark.parametrize("problem_kind", ["cross_modality"])
def test_annotation_mapping(
self, adata_anno: Tuple[AnnData, AnnData], forward: bool, mapping_mode, batch_size, gt_tm_annotation
):
adata_src, adata_tgt = adata_anno
tp = TranslationProblem(adata_src, adata_tgt)
tp = tp.prepare(src_attr="emb_src", tgt_attr="emb_tgt")
problem_keys = ("src", "tgt")
assert set(tp.problems.keys()) == {problem_keys}
tp[problem_keys].set_solution(MockSolverOutput(gt_tm_annotation), overwrite=True)
annotation_label = "celltype1" if forward else "celltype2"
result = tp.annotation_mapping(
mapping_mode=mapping_mode,
annotation_label=annotation_label,
forward=forward,
source="src",
target="tgt",
batch_size=batch_size,
)
if forward:
expected_result = (
adata_src.uns["expected_max1"] if mapping_mode == "max" else adata_src.uns["expected_sum1"]
)
else:
expected_result = (
adata_tgt.uns["expected_max2"] if mapping_mode == "max" else adata_tgt.uns["expected_sum2"]
)
assert (result[annotation_label] == expected_result).all()