-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfile_system.py
196 lines (157 loc) · 5.48 KB
/
file_system.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import sys
import pickle
import time
from user_parser import UserParser
from math import *
import threading
class DataBase:
def __init__(self, contest, users):
if not os.path.exists(contest):
os.mkdir(contest)
self.user_list = users
self.contest = contest
self.CF = None
self.Ravg = None
self.Rating = {}
self.Volatility = {}
self.TimesPlayed = {}
def update(self):
c = 0
flag = True
delete = []
THREADS = []
def f(user):
try:
U = UserParser(user)
U.parse()
U.calc()
fout = open(self.contest+'/'+user+'.dat', "wb")
pickle.dump(U, fout)
fout.close()
print(c, user)
except:
try:
if user_parser.isDeleted(user):
delete.append(user)
except:
print(user+" : Network Error from DataBase.")
flag = False
for user in self.user_list:
if os.path.exists(self.contest+'/'+user+'.dat'):
continue
t = threading.Thread(target=f, args=(user,))
THREADS.append(t)
if len(THREADS) == 250:
for thread in THREADS:
thread.start()
for thread in THREADS:
thread.join()
THREADS = list()
time.sleep(5)
for thread in THREADS:
thread.start()
for thread in THREADS:
thread.join()
THREADS = list()
## for user in self.user_list:
## c += 1
## if os.path.exists(self.contest+'/'+user+'.dat'):
## continue
## else:
## try:
## U = UserParser(user)
## U.parse()
## U.calc()
## f = open(self.contest+'/'+user+'.dat', "wb")
## pickle.dump(U, f)
## f.close()
## print(c, user)
## except:
## try:
## if user_parser.isDeleted(user):
## delete.append(user)
## except:
## print(user+" : Network Error from DataBase.")
## flag = False
for user in delete:
index = self.user_list.index(user)
self.user_list.pop(index)
## print(delete)
return flag
def getRating(self, user):
if user in self.Rating:
return self.Rating[user]
f = open(self.contest+'/'+user+'.dat', "rb")
U = pickle.load(f)
f.close()
self.Rating[user] = U.getRating()
return self.Rating[user]
def getVolatility(self, user):
if user in self.Volatility:
return self.Volatility[user]
f = open(self.contest+'/'+user+'.dat', "rb")
U = pickle.load(f)
f.close()
self.Volatility[user] = U.getVolatility()
return self.Volatility[user]
def getTimesPlayed(self, user):
if user in self.TimesPlayed:
return self.TimesPlayed[user]
f = open(self.contest+'/'+user+'.dat', "rb")
U = pickle.load(f)
f.close()
self.TimesPlayed[user] = U.getTimesPlayed()
return self.TimesPlayed[user]
def Eab(self, user1, user2):
Ra = self.getRating(user1)
Rb = self.getRating(user2)
Va = self.getVolatility(user1)
Vb = self.getVolatility(user2)
return 1 / (1 + pow(4, (Ra - Rb)/sqrt((Va**2 + Vb**2))))
def ERank(self, user):
res = 0
for user2 in self.user_list:
res += self.Eab(user, user2)
return res
def getRavg(self):
if(self.Ravg != None): return self.Ravg
s = 0
for user in self.user_list:
s += self.getRating(user)
self.Ravg = s/len(self.user_list)
return self.Ravg
def APerf(self, user):
ARank = self.user_list.index(user) + 1
N = len(self.user_list)
try:
r = log(N/(ARank - 1))/log(4)
except:
r = 1e9
return r
def EPerf(self, user):
N = len(self.user_list)
try:
r = log(N/(self.ERank(user) - 1))/log(4)
except:
r = 1e9
return r
def getCF(self):
if(self.CF != None): return self.CF
S1 = 0
S2 = 0
N = len(self.user_list)
for user in self.user_list:
S1 += self.getVolatility(user)**2
S2 += (self.getRating(user)-self.getRavg())**2
self.CF = sqrt(S1/N+S2/(N-1))
return self.CF
def getRatingChange(self, user):
RWa = (0.4*self.getTimesPlayed(user) + 0.2)/(0.7*self.getTimesPlayed(user) + 0.6)
D = (self.APerf(user)-self.EPerf(user))*self.getCF()*RWa
MaxChange = 100 + 75/(self.getTimesPlayed(user)+1) + (100*500)/(abs(self.getRating(user) - 1500) + 500)
if D > MaxChange:
D = MaxChange
if D < -MaxChange:
D = -MaxChange
return D