-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathemotion_info.py
71 lines (55 loc) · 2.96 KB
/
emotion_info.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import pandas as pd
import os
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
directory_path = "dataset/emotion_data"
folder_names = sorted([int(folder) for folder in os.listdir(directory_path) if os.path.isdir(os.path.join(directory_path, folder))])
for i in folder_names:
df_emotion = pd.read_csv(f"{directory_path}/{i}/emotion.csv")
df_gaze = pd.read_csv(f"{directory_path}/{i}/gaze.csv")
emotion = {"angry" : df_emotion["angry"],
"disgust" : df_emotion["disgust"],
"fear" : df_emotion["fear"],
"happy" : df_emotion["happy"],
"sad" : df_emotion["sad"],
"surprise" : df_emotion["surprise"],
"neutral" : df_emotion["neutral"]}
emotion_mean = {}
for key, value in emotion.items():
emotion_mean[key] = value.mean()
dominant_emotion = max(emotion_mean, key=lambda k: emotion_mean[k])
plt.figure(figsize=(26, 11))
labels = list(emotion_mean.keys())
values = list(emotion_mean.values())
plt.pie(values, labels=[None]*len(labels))
legend_labels = [f'{label} ({value:.2f}%)' for label, value in zip(labels, values)]
plt.legend(legend_labels, loc='upper right')
plt.text(0, -1.1, f'Dominant Emotion: {dominant_emotion}', ha='center', va='center', fontsize=13)
plt.title(f'Emotions Distribution for Candidate {i}', fontsize=16, fontweight='bold', y=-0.1)
plt.savefig(f'candidate_details/{i}/emotion.png')
plt.show()
df = pd.merge(df_emotion, df_gaze, on='image_seq', how='inner')
df.drop('movie_id_y', axis=1, inplace=True)
df.rename(columns={'movie_id_x': 'movie_id'}, inplace=True)
df_correlation = df[['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral', 'gaze', 'eye_offset']]
correlation_matrix = df_correlation.corr()
plt.figure(figsize=(10, 8))
plt.title(f"Correlation heatmap for Candidate {i}", fontweight = 'bold')
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', square=True)
plt.savefig(f'candidate_details/{i}/correlation.png')
plt.show()
gaze = df_gaze["gaze"]
image_seq = df_gaze["image_seq"]
percentage_gaze = (sum(gaze) / len(gaze)) * 100
plt.figure(figsize=(28, 20))
plt.step(image_seq, gaze, where='mid', color='b')
plt.ylabel("Gaze", fontsize=20)
plt.xlabel("Image sequence", fontsize=20)
plt.title(f"Gaze of Candidate {i}", fontsize=28, fontweight='bold')
explanation_text = "Gaze 1 = Person looked into the camera\nGaze 0 = Person did not look into the camera"
plt.text(image_seq.min(), -0.20, explanation_text, ha='left', fontsize=14, color='gray')
plt.text(image_seq.min(), -0.15, f'Percentage of frames looked into the camera: {percentage_gaze:.2f}%', va='center', fontsize=14, fontweight='bold')
plt.yticks([0, 1])
plt.savefig(f'candidate_details/{i}/gaze.png')
plt.show()