-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathemotion_analysis.py
71 lines (54 loc) · 2.12 KB
/
emotion_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Import necessary modules
import aiohttp
import asyncio
import nest_asyncio
import time
import json
import os
import base64
from dotenv import load_dotenv
from PIL import Image
def image_to_base64(image_path):
with open(image_path, "rb") as img_file:
img_data = img_file.read()
base64_string = base64.b64encode(img_data).decode('utf-8')
return base64_string
# Apply nest_asyncio
nest_asyncio.apply()
llava_endpoint = os.getenv("LLAVA_ENDPOINT")
async def fetch(session, url, data):
async with session.post(url, data=data) as response:
return await response.text()
async def analyze(response_count = 1):
output_frame_folder = "video_frames" # Change this to the output frame folder
frame_count = 0
good_frame = 0
# Loop through all frames in the output_frames folder
for filename in os.listdir(output_frame_folder):
if filename.endswith(".jpg"):
# Construct the full path to the frame
frame_path = os.path.join(output_frame_folder, filename)
frame_count += 1
s = image_to_base64(frame_path)
url = llava_endpoint
data = json.dumps({
"model": "llava:7b-v1.6-mistral-q5_K_M",
"prompt": "if you had to categorize the emotion of this person as happy, sad, angry, fear, neutral or confident. what would it be? i need a precise one word answer",
"stream": False,
"images": [s]
})
headers = {'Content-Type': 'application/json'}
async with aiohttp.ClientSession(headers=headers) as session:
tasks = []
for _ in range(response_count):
task = asyncio.create_task(fetch(session, url, data))
tasks.append(task)
responses = await asyncio.gather(*tasks)
data = json.loads(responses[0])
print(data["response"])
s = data["response"]
if('happy' in s.lower() or 'confident' in s.lower()):
good_frame += 1
if('neutral' in s.lower()):
good_frame += 0.5
return good_frame/frame_count