-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
384 lines (284 loc) · 16.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import wandb
@tf.function
def tf_sign_not_zero(x):
# A variant on the sign function where sign(0) = 1 but otherwise normal
s = tf.math.sign(x)
return tf.where(tf.math.equal(s,0), tf.ones_like(s), s)
@tf.function
def tf_error_outside_bounds(pred, obs, upper_bound, lower_bound):
pos_error = tf.math.maximum(tf_sign_not_zero(obs)*pred - (tf.math.sign(obs)*obs + upper_bound), 0)
neg_error = tf.math.minimum(tf_sign_not_zero(obs)*pred - (tf.math.sign(obs)*obs - tf.math.minimum(tf.cast(lower_bound, 'float'), tf.math.abs(obs))), 0)
return tf.math.maximum(tf.square(pos_error), tf.square(neg_error))
class PINN(tf.keras.Model):
def __init__(self, config, dataset, gen_model_filename=None):
super().__init__()
self.use_wandb = config.get('wandb', False)
self.velocity_error_allowed = config.get('velocity_error_allowed', 0)
self.allow_higher_depth_averaged_velocity = config.get('allow_higher_depth_averaged_velocity', True)
if self.allow_higher_depth_averaged_velocity:
self.velocity_error_upper = self.velocity_error_allowed
else:
self.velocity_error_upper = 0
self.smoothing_norm_type = config.get('smoothing_norm_type', 2)
self.radar_data_norm_type = config.get('radar_data_loss_norm_type', 2)
self.gen_learning_rate = config.get('learning_rate', 0.001)
self.is_1d = config.get('is_1d', False)
self.predict_surface_velocity = config.get('predict_surface_velocity', False)
self.loss_weights = {
'radar_data': tf.Variable(config['radar_loss_weight'], dtype=tf.float32, trainable=False),
'velocity_data': tf.Variable(config['velocity_loss_weight'], dtype=tf.float32, trainable=False),
'negative_thickness': tf.Variable(config['negative_thickness_loss_weight'], dtype=tf.float32, trainable=False),
'model': tf.Variable(config['model_loss_weight'], dtype=tf.float32, trainable=False),
'thickness_smoothing': tf.Variable(config.get('thickness_smoothing_loss_weight',0), dtype=tf.float32, trainable=False),
'velocity_smoothing': tf.Variable(config.get('velocity_smoothing_loss_weight',0), dtype=tf.float32, trainable=False),
'velocity_diff_smoothing': tf.Variable(config.get('velocity_diff_smoothing_loss_weight',0), dtype=tf.float32, trainable=False),
'velocity_mag_data': tf.Variable(config.get('velocity_mag_data_loss_weight',0), dtype=tf.float32, trainable=False),
'velocity_ang_data': tf.Variable(config.get('velocity_ang_data_loss_weight',0), dtype=tf.float32, trainable=False),
'surface_velocity_data': tf.Variable(config.get('surface_velocity_data_loss_weight',0), dtype=tf.float32, trainable=False)
}
self.dataset = dataset
if gen_model_filename:
self.make_loss_functions()
gen_model = tf.keras.models.load_model(gen_model_filename,
custom_objects={
'radar_data_loss': self.radar_data_loss,
'velocity_data_loss': self.velocity_data_loss,
'model_loss': self.model_loss,
'negative_thickness_loss': self.negative_thickness_loss,
'gen_loss': self.gen_loss,
'unweighted_loss': self.unweighted_loss,
'thickness_smoothing_loss': self.thickness_smoothing_loss,
'velocity_smoothing_loss': self.velocity_smoothing_loss,
'velocity_diff_smoothing_loss': self.velocity_diff_smoothing_loss,
'velocity_mag_data_loss': self.velocity_mag_data_loss,
'velocity_ang_data_loss': self.velocity_ang_data_loss,
'surface_velocity_data_loss': self.surface_velocity_data_loss
})
self.generator = gen_model
else:
self.generator = self.make_generator(config)
def make_loss_functions(self):
def radar_data_loss(obs, pred):
h_pred = pred[:,0] * self.dataset.h_scale
h = obs[:,0]
finite_labels = tf.math.is_finite(h)
if self.radar_data_norm_type == 1:
data_loss = tf.reduce_mean(tf.abs(tf.boolean_mask(h, finite_labels) - tf.boolean_mask(h_pred, finite_labels)))
else:
data_loss = tf.reduce_mean(tf.square(tf.boolean_mask(h, finite_labels) - tf.boolean_mask(h_pred, finite_labels)))
data_loss = tf.where(tf.math.is_nan(data_loss), tf.zeros_like(data_loss), data_loss)
return data_loss
self.radar_data_loss = radar_data_loss
def velocity_data_loss(obs, pred):
vx_pred = pred[:,1] * self.dataset.v_scale
vy_pred = pred[:,2] * self.dataset.v_scale
vx = obs[:,1]
vy = obs[:,2]
finite_labels = tf.math.is_finite(vx)
vx_finite = tf.boolean_mask(vx, finite_labels)
vy_finite = tf.boolean_mask(vy, finite_labels)
vx_pred_finite = tf.boolean_mask(vx_pred, finite_labels)
vy_pred_finite = tf.boolean_mask(vy_pred, finite_labels)
vx_error = tf_error_outside_bounds(vx_pred_finite, vx_finite, self.velocity_error_upper, self.velocity_error_allowed)
vy_error = tf_error_outside_bounds(vy_pred_finite, vy_finite, self.velocity_error_upper, self.velocity_error_allowed)
velocity_data_loss = (tf.reduce_mean(vx_error) + tf.reduce_mean(vy_error)) / 2
return velocity_data_loss
self.velocity_data_loss = velocity_data_loss
def surface_velocity_data_loss(obs, pred):
surf_vx_pred = pred[:,3] * self.dataset.v_scale
surf_vy_pred = pred[:,4] * self.dataset.v_scale
vx = obs[:,1]
vy = obs[:,2]
finite_labels = tf.math.is_finite(vx)
vx_diff = tf.boolean_mask(vx, finite_labels) - tf.boolean_mask(surf_vx_pred, finite_labels)
vy_diff = tf.boolean_mask(vy, finite_labels) - tf.boolean_mask(surf_vy_pred, finite_labels)
surf_velocity_data_loss = (tf.reduce_mean(tf.square(vx_diff)) + tf.reduce_mean(tf.square(vy_diff))) / 2
return surf_velocity_data_loss
self.surface_velocity_data_loss = surface_velocity_data_loss
def velocity_mag_data_loss(obs, pred):
vx_pred = pred[:,1] * self.dataset.v_scale
vy_pred = pred[:,2] * self.dataset.v_scale
vx = obs[:,1]
vy = obs[:,2]
finite_labels = tf.math.is_finite(vx)
vx_finite = tf.boolean_mask(vx, finite_labels)
vy_finite = tf.boolean_mask(vy, finite_labels)
vx_pred_finite = tf.boolean_mask(vx_pred, finite_labels)
vy_pred_finite = tf.boolean_mask(vy_pred, finite_labels)
obs_mag = tf.math.sqrt(tf.square(vx_finite)+tf.square(vy_finite))
obs_mag_safe = tf.where(tf.math.is_finite(obs_mag), obs_mag, tf.zeros_like(obs_mag))
pred_mag = tf.math.sqrt(tf.square(vx_pred_finite)+tf.square(vy_pred_finite))
pred_mag_safe = tf.where(tf.math.is_finite(pred_mag), pred_mag, tf.zeros_like(pred_mag))
return tf.reduce_mean(tf_error_outside_bounds(pred_mag_safe, obs_mag_safe, self.velocity_error_upper, self.velocity_error_allowed))
self.velocity_mag_data_loss = velocity_mag_data_loss
def velocity_ang_data_loss(obs, pred):
vx_pred = pred[:,1] * self.dataset.v_scale
vy_pred = pred[:,2] * self.dataset.v_scale
vx = obs[:,1]
vy = obs[:,2]
finite_labels = tf.math.is_finite(vx)
vx_finite = tf.boolean_mask(vx, finite_labels)
vy_finite = tf.boolean_mask(vy, finite_labels)
vx_pred_finite = tf.boolean_mask(vx_pred, finite_labels)
vy_pred_finite = tf.boolean_mask(vy_pred, finite_labels)
theta_diff = tf.math.atan2(vy_finite, vx_finite) - tf.math.atan2(vy_pred_finite, vx_pred_finite)
ang_loss = tf.reduce_mean(tf.square(theta_diff))
return ang_loss
self.velocity_ang_data_loss = velocity_ang_data_loss
def model_loss(obs, predictions):
x = obs[:,3] * self.dataset.xy_scale
y = obs[:,4] * self.dataset.xy_scale
# div(h*v) = h*vx_x + h_x*vx + h*vy_y + h_y*vy = 0
with tf.GradientTape(persistent=True) as tape:
tape.watch(x)
tape.watch(y)
inpt = tf.stack([x / self.dataset.xy_scale, y / self.dataset.xy_scale], axis=1)
pred2 = self.generator(inpt)
h = pred2[:,0] * self.dataset.h_scale
vx = pred2[:,1] * self.dataset.v_scale
vy = pred2[:,2] * self.dataset.v_scale
h_x = tape.gradient(h, x)
h_y = tape.gradient(h, y)
vx_x = tape.gradient(vx, x)
vy_y = tape.gradient(vy, y)
if self.is_1d:
f = h*vx_x + h_x*vx
else:
f = h*vx_x + h_x*vx + h*vy_y + h_y*vy
model_loss = tf.reduce_mean(tf.square(f))
return model_loss
self.model_loss = model_loss
def thickness_smoothing_loss(obs, predictions):
x = obs[:,3] * self.dataset.xy_scale
y = obs[:,4] * self.dataset.xy_scale
with tf.GradientTape(persistent=True) as tape:
tape.watch(x)
tape.watch(y)
inpt = tf.stack([x / self.dataset.xy_scale, y / self.dataset.xy_scale], axis=1)
pred2 = self.generator(inpt)
h = pred2[:,0] * self.dataset.h_scale
h_x = tape.gradient(h, x) * 1000 # convert to m/km
h_y = tape.gradient(h, y) * 1000
if self.is_1d:
h_y = 0 * h_y
if self.smoothing_norm_type == 2:
smoothing_loss = tf.reduce_mean(tf.square(h_x)) + tf.reduce_mean(tf.square(h_y))
elif self.smoothing_norm_type == 1:
smoothing_loss = tf.reduce_mean(tf.abs(h_x)) + tf.reduce_mean(tf.square(h_y))
else:
raise Exception(f"Unknown smoothing norm type {self.smoothing_norm_type} (try 1 or 2)")
return smoothing_loss
self.thickness_smoothing_loss = thickness_smoothing_loss
def velocity_smoothing_loss(obs, predictions):
x = obs[:,3] * self.dataset.xy_scale
y = obs[:,4] * self.dataset.xy_scale
with tf.GradientTape(persistent=True) as tape:
tape.watch(x)
tape.watch(y)
inpt = tf.stack([x / self.dataset.xy_scale, y / self.dataset.xy_scale], axis=1)
pred2 = self.generator(inpt)
vx = pred2[:,1] * self.dataset.v_scale
vy = pred2[:,2] * self.dataset.v_scale
vx_x = tape.gradient(vx, x) * 1000
vx_y = tape.gradient(vx, y) * 1000
vy_y = tape.gradient(vy, y) * 1000
vy_x = tape.gradient(vy, x) * 1000
if self.is_1d:
vx_y = vx_y * 0
vy_y = vy_y * 0
vy_x = vy_x * 0
smoothing_loss = (tf.reduce_mean(tf.square(vx_x)) + tf.reduce_mean(tf.square(vx_y)) + \
tf.reduce_mean(tf.square(vy_y)) + tf.reduce_mean(tf.square(vy_x)))/4
return smoothing_loss
self.velocity_smoothing_loss = velocity_smoothing_loss
def velocity_diff_smoothing_loss(obs, predictions):
x = obs[:,3] * self.dataset.xy_scale
y = obs[:,4] * self.dataset.xy_scale
with tf.GradientTape(persistent=True) as tape:
tape.watch(x)
tape.watch(y)
inpt = tf.stack([x / self.dataset.xy_scale, y / self.dataset.xy_scale], axis=1)
pred2 = self.generator(inpt)
vx = pred2[:,1] * self.dataset.v_scale
vy = pred2[:,2] * self.dataset.v_scale
vx_surf = pred2[:,3] * self.dataset.v_scale
vy_surf = pred2[:,4] * self.dataset.v_scale
vx_diff = vx_surf - vx
vy_diff = vy_surf - vy
vx_diff_x = tape.gradient(vx_diff, x) * 1000 # per km
vx_diff_y = tape.gradient(vx_diff, y) * 1000
vy_diff_y = tape.gradient(vy_diff, y) * 1000
vy_diff_x = tape.gradient(vy_diff, x) * 1000
if self.is_1d:
vy_diff_y = vy_diff_y * 0
vy_diff_x = vy_diff_x * 0
vx_diff_y = vx_diff_y * 0
smoothing_loss = (tf.reduce_mean(tf.square(vx_diff_x)) + tf.reduce_mean(tf.square(vy_diff_y)) + \
tf.reduce_mean(tf.square(vx_diff_y)) + tf.reduce_mean(tf.square(vy_diff_x)))/4
return smoothing_loss
self.velocity_diff_smoothing_loss = velocity_diff_smoothing_loss
def negative_thickness_loss(obs, pred):
h = pred[:,0]
return tf.reduce_mean(tf.square(tf.minimum(h, 0)))
self.negative_thickness_loss = negative_thickness_loss
def gen_loss(obs, pred, weights=self.loss_weights):
loss = weights.get('radar_data', 1.0) * radar_data_loss(obs, pred)
loss += weights.get('velocity_data', 1.0) * velocity_data_loss(obs, pred)
loss += weights.get('negative_thickness', 1.0) * negative_thickness_loss(obs, pred)
loss += weights.get('model', 1.0) * model_loss(obs, pred)
loss += weights.get('thickness_smoothing', 1.0) * thickness_smoothing_loss(obs, pred)
loss += weights.get('velocity_smoothing', 1.0) * velocity_smoothing_loss(obs, pred)
loss += weights.get('velocity_mag_data', 1.0) * velocity_mag_data_loss(obs, pred)
loss += weights.get('velocity_ang_data', 1.0) * velocity_ang_data_loss(obs, pred)
if self.predict_surface_velocity:
loss += weights.get('velocity_diff_smoothing', 1.0) * velocity_diff_smoothing_loss(obs, pred)
loss += weights.get('surface_velocity_data', 1.0) * surface_velocity_data_loss(obs, pred)
return loss
self.gen_loss = gen_loss
def unweighted_loss(obs, pred):
return gen_loss(obs, pred, weights={})
self.unweighted_loss = unweighted_loss
def compile(self):
super(PINN, self).compile()
self.make_loss_functions()
gen_opt = tf.keras.optimizers.Adam(learning_rate=self.gen_learning_rate)
metrics = [self.unweighted_loss, self.radar_data_loss, self.velocity_data_loss, self.model_loss,
self.negative_thickness_loss, self.thickness_smoothing_loss, self.velocity_smoothing_loss,
self.velocity_mag_data_loss, self.velocity_ang_data_loss]
if self.predict_surface_velocity:
metrics.append(self.velocity_diff_smoothing_loss)
metrics.append(self.surface_velocity_data_loss)
self.generator.compile(optimizer=gen_opt, loss=self.gen_loss, metrics=metrics)
@property
def metrics(self):
return self.generator.metrics
def call(self, inputs):
return self.generator(inputs)
def make_generator(self, config):
if self.predict_surface_velocity:
n_outputs = 5
else:
n_outputs = 3
layers = [2] + [config['generator_width']]*(config['generator_layers']) + [n_outputs]
model = tf.keras.Sequential(name="generator")
model.add(tf.keras.layers.InputLayer(input_shape=(layers[0],)))
for width in layers[1:-1]:
model.add(tf.keras.layers.Dense(
width, activation=config['generator_activation'],
kernel_initializer="glorot_normal"))
model.add(tf.keras.layers.Dense(
layers[-1], activation='linear',
kernel_initializer="glorot_normal"))
return model
def predict_from_unnormalized(self, x, y):
x_norm, y_norm, _, _, _ = self.dataset.normalize(x, y, None, None, None)
inpts = np.concatenate([np.expand_dims(x_norm, -1), np.expand_dims(y_norm, -1)], axis=1)
pred = self.generator(inpts)
return {
'h': pred[:,0] * self.dataset.h_scale,
'vx': pred[:,1] * self.dataset.v_scale,
'vy': pred[:,2] * self.dataset.v_scale
}