@@ -2807,21 +2807,25 @@ def to_latex(self, buf=None, columns=None, col_space=None, header=True,
2807
2807
defaults to 'ascii' on Python 2 and 'utf-8' on Python 3.
2808
2808
decimal : str, default '.'
2809
2809
Character recognized as decimal separator, e.g. ',' in Europe.
2810
+
2810
2811
.. versionadded:: 0.18.0
2811
2812
multicolumn : bool, default True
2812
2813
Use \multicolumn to enhance MultiIndex columns.
2813
2814
The default will be read from the config module.
2815
+
2814
2816
.. versionadded:: 0.20.0
2815
2817
multicolumn_format : str, default 'l'
2816
2818
The alignment for multicolumns, similar to `column_format`
2817
2819
The default will be read from the config module.
2820
+
2818
2821
.. versionadded:: 0.20.0
2819
2822
multirow : bool, default False
2820
2823
Use \multirow to enhance MultiIndex rows. Requires adding a
2821
2824
\usepackage{multirow} to your LaTeX preamble. Will print
2822
2825
centered labels (instead of top-aligned) across the contained
2823
2826
rows, separating groups via clines. The default will be read
2824
2827
from the pandas config module.
2828
+
2825
2829
.. versionadded:: 0.20.0
2826
2830
2827
2831
Returns
@@ -4948,15 +4952,15 @@ def pipe(self, func, *args, **kwargs):
4948
4952
4949
4953
Returns
4950
4954
-------
4951
- DataFrame , Series or scalar
4955
+ scalar , Series or DataFrame
4952
4956
4953
4957
The return can be:
4954
4958
4955
- - If DataFrame .agg is called with a single function, returns a Series.
4956
- - If DataFrame.agg is called with several functions, returns
4957
- a DataFrame.
4958
- - If Series.agg is called with single function, returns a scalar.
4959
- - If Series.agg is called with several functions, returns a Series .
4959
+ * scalar : when Series .agg is called with single function
4960
+ * Series : when DataFrame.agg is called with a single function
4961
+ * DataFrame : when DataFrame.agg is called with several functions
4962
+
4963
+ Return scalar, Series or DataFrame .
4960
4964
4961
4965
%(see_also)s
4962
4966
@@ -6885,12 +6889,13 @@ def asof(self, where, subset=None):
6885
6889
6886
6890
The return can be:
6887
6891
6888
- * Scalar : when `self` is a Series and `where` is a scalar
6892
+ * scalar : when `self` is a Series and `where` is a scalar
6889
6893
* Series: when `self` is a Series and `where` is an array-like,
6890
6894
or when `self` is a DataFrame and `where` is a scalar
6891
6895
* DataFrame : when `self` is a DataFrame and `where` is an
6892
6896
array-like
6893
- Return scalar, Sereis, or DataFrame.
6897
+
6898
+ Return scalar, Series, or DataFrame.
6894
6899
6895
6900
See Also
6896
6901
--------
0 commit comments