From b965f3086e8a91816ed381989d4e1ca170d44f4e Mon Sep 17 00:00:00 2001 From: Tim Hosgood Date: Sun, 24 Mar 2024 17:23:39 +0000 Subject: [PATCH] fix \tag --- trees/sga6/sga6-0/sga6-0.1.tree | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/trees/sga6/sga6-0/sga6-0.1.tree b/trees/sga6/sga6-0/sga6-0.1.tree index 5fda1fa..43c0a3f 100644 --- a/trees/sga6/sga6-0/sga6-0.1.tree +++ b/trees/sga6/sga6-0/sga6-0.1.tree @@ -13,7 +13,7 @@ ##{ \Todd(T_Y)\ch_Y(f_*(\cl(\sh{F}))) = f_*(\Todd(T_X)\ch_X(\sh{F})) - \tag{1.1} + \startverb\tag{1.1}\stopverb } where #{\cl(\sh{F})} denotes the class of #{\sh{F}} in the group #{K(X)} of classes of coherent sheaves on #{X}, and #{\ch_X} and #{\ch_Y} denote the Chern characters of on #{X} and #{Y} (resp.), and #{T_X} and #{T_Y} the tangent bundles to #{X} and #{Y} (resp.). This formula holds in #{A(Y)\otimes_\ZZ\QQ}, where #{A(Y)} is the Chow ring of #{Y}; @@ -32,13 +32,13 @@ ##{ \ch_Y(f_*(\cl(\sh{F}))) = f_*(\Todd(T_f)\ch_X(\sh{F})) - \tag{1.2} + \startverb\tag{1.2}\stopverb } where we set ##{ T_f = T_X - f^*(T_Y) \in K(X) - \tag{1.3} + \startverb\tag{1.3}\stopverb } so that #{T_f} plays the role of a \em{virtual relative tangent bundle} of #{X} over #{Y}. In the case where the morphism #{f} is smooth (i.e. with everywhere-surjective tangent map), we have simply