-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathrnn_encoder.py
45 lines (35 loc) · 1.24 KB
/
rnn_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from utils import *
from embedding import *
class rnn_encoder(nn.Module):
def __init__(self, cti, wti, num_tags):
super().__init__()
# architecture
self.embed = embed(EMBED, cti, wti, hre = HRE)
self.rnn = getattr(nn, RNN_TYPE)(
input_size = self.embed.dim,
hidden_size = HIDDEN_SIZE // NUM_DIRS,
num_layers = NUM_LAYERS,
bias = True,
dropout = DROPOUT,
bidirectional = (NUM_DIRS == 2)
)
self.out = nn.Linear(HIDDEN_SIZE, num_tags) # RNN output to tag
def init_state(self, b): # initialize RNN states
n = NUM_LAYERS * NUM_DIRS
h = HIDDEN_SIZE // NUM_DIRS
hs = zeros(n, b, h) # hidden state
if RNN_TYPE == "GRU":
return hs
cs = zeros(n, b, h) # LSTM cell state
return (hs, cs)
def forward(self, xc, xw, mask):
b = mask.size(1)
s = self.init_state(b)
lens = mask.sum(0).int().cpu()
x = self.embed(b, xc, xw)
x = nn.utils.rnn.pack_padded_sequence(x, lens, enforce_sorted = False)
h, _ = self.rnn(x, s)
h, _ = nn.utils.rnn.pad_packed_sequence(h)
h = self.out(h)
h *= mask.unsqueeze(2)
return h