-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathengine.py
166 lines (130 loc) · 6.59 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
"""
Train and eval functions used in main.py
"""
import math
import sys
from typing import Iterable, Optional
import torch
import torch.distributed as dist
import utils
from pathlib import Path
from timm.data import Mixup
from timm.utils import accuracy, ModelEma
from losses import DistillationLoss
import utils
import dllogger as DLLogger
from quantization import update_BSRamping_period, QLinearLayer
def train_one_epoch(model: torch.nn.Module, criterion: DistillationLoss,
data_loader: Iterable, eval_data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None,
set_training_mode=True, args = None,
calib_data_loader: Optional[Iterable] = None):
model.train(set_training_mode)
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = args.print_freq
if args.cosub:
criterion = torch.nn.BCEWithLogitsLoss()
if "BSRamping" in args.opt:
if args.opt_ramping_type <= 5:
CALIBRATE_PERIOD = len(data_loader)
else:
raise NotImplementedError
max_step = CALIBRATE_PERIOD
output_dir = Path(args.output_dir)
for step, (samples, targets) in metric_logger.log_every(data_loader, print_freq, header):
if "BSRamping" in args.opt and step % CALIBRATE_PERIOD == 0:
assert max_norm is None, "Only Support no-grad_clipping !!"
print(f"start calibration of element-wise BSRamping at [epoch#{epoch} step#{step}/{len(data_loader)}]!!!")
update_BSRamping_period(model, epoch=epoch, step=step, max_step=max_step, calib_data_loader=calib_data_loader,
optimizer=optimizer, loss_scaler=loss_scaler, max_norm=max_norm, device=device, args=args,
criterion=criterion, mixup_fn=mixup_fn)
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
if args.cosub:
samples = torch.cat((samples,samples),dim=0)
if args.bce_loss:
targets = targets.gt(0.0).type(targets.dtype)
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
outputs = model(samples)
if not args.cosub:
loss = criterion(samples, outputs, targets)
else:
outputs = torch.split(outputs, outputs.shape[0]//2, dim=0)
loss = 0.25 * criterion(outputs[0], targets)
loss = loss + 0.25 * criterion(outputs[1], targets)
loss = loss + 0.25 * criterion(outputs[0], outputs[1].detach().sigmoid())
loss = loss + 0.25 * criterion(outputs[1], outputs[0].detach().sigmoid())
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
optimizer.zero_grad()
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order)
torch.cuda.synchronize()
if model_ema is not None:
model_ema.update(model)
if args.qlinear_ema_decay > 0: # EMA-Weight Update
for name, module in model.module.named_modules():
if isinstance(module, QLinearLayer):
if module.training and module.apply_quantize and module.is_ema:
module.ema_step += 1
module.ema_weight.mul_(module.ema_decay).add_(module.weight.data, alpha = 1 - module.ema_decay)
metric_logger.update(loss=loss_value)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
step_summary = {
"loss": loss.item(),
}
DLLogger.log(step=epoch * len(data_loader) + step,
data=step_summary, verbosity=0)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device,
copied_data_num=0):
"""
copied_data_num: ignore results from [-copied_data_num:]
NOTE: because we copied `copied_data_num` duplicate samples to make
len(dataset_val) % batch_size == 0
in acc calculation, we should ignore them """
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
unloaded_num = len(data_loader.dataset)
for step, (images, target) in metric_logger.log_every(data_loader, 100, header):
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
batch_size = target.shape[0]
unloaded_num -= batch_size
if unloaded_num == 0 and copied_data_num > 0:
target = target[:-copied_data_num]
batch_size = target.shape[0]
print(f"eval cut : batch_size = {batch_size}")
# compute output
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
output = model(images)
if unloaded_num == 0 and copied_data_num > 0:
output = output[:batch_size]
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}