@@ -16,23 +16,33 @@ def _set_number_target(self, number_target):
16
16
self .number_target = number_target
17
17
return self .number_target
18
18
19
- def __init__ (self , window_length : int = 10 , number_target : Optional [int ] = None , seed : Optional [int ] = None , degree_agnostic : Boolen ) -> None :
19
+ def __init__ (
20
+ self ,
21
+ window_length : int = 10 ,
22
+ number_target : Optional [int ] = None ,
23
+ seed : Optional [int ] = None ,
24
+ degree_agnostic : bool = False ,
25
+ ):
20
26
"""
21
27
Parameters
22
28
----------
23
29
window_length : int
24
30
Number of nodes to sample in the context window
25
31
number_target : int
26
- Number of target nodes or edges to sample, can be none because fit can take centers
32
+ Number of target nodes or edges to sample,
33
+ can be none because fit can take centers
27
34
seed : int
28
35
Seed for random number generator
29
36
"""
30
37
self .window_length = window_length
31
38
self .number_target = number_target
32
- self .seed = utils .get_formatted_environ_variable ("SEED" , int , 42 ) if seed is None else seed
39
+ self .seed = (
40
+ utils .get_formatted_environ_variable ("SEED" , int , 42 )
41
+ if seed is None
42
+ else seed
43
+ )
33
44
self ._set_seed ()
34
45
35
-
36
46
def num_nodes (self , A ):
37
47
return A .shape [0 ]
38
48
@@ -41,6 +51,8 @@ def num_edges(self, A):
41
51
42
52
def _generate_centers (self , A ):
43
53
return np .random .choice (self .num_nodes (A ), self .number_target , replace = False )
44
- def sample (self , centers : Optional [np .ndarray ], padding_mask : int = 0 ) -> np .ndarray :
45
- raise NotImplementedError
46
54
55
+ def sample (
56
+ self , centers : Optional [np .ndarray ], padding_mask : int = 0
57
+ ) -> np .ndarray :
58
+ raise NotImplementedError
0 commit comments