|
| 1 | +import numpy as np |
| 2 | +import torch |
| 3 | +from torch_geometric.nn import Node2Vec as PyGNode2Vec |
| 4 | + |
| 5 | + |
| 6 | +from ..utils import config, torch_utils |
| 7 | + |
| 8 | + |
| 9 | +class Node2Vec(object): |
| 10 | + def __init__(self, adj_list, embedding_dim, walk_length, context_size, device=config.DEVICE, |
| 11 | + logging=config.LOGGING, **params): |
| 12 | + edge_index = torch_utils.adj_list_to_edge_index(adj_list) |
| 13 | + self.model = PyGNode2Vec( |
| 14 | + edge_index, embedding_dim, walk_length, context_size, **params |
| 15 | + ).to(device) |
| 16 | + self.num_workers = config.WORKER_COUNT |
| 17 | + self.logging = logging |
| 18 | + self.loader = self.optimizer = None |
| 19 | + |
| 20 | + def fit(self, epochs=1, learning_rate=.1, batch_size=128): |
| 21 | + |
| 22 | + # TODO (ashutosh): check if training two times works |
| 23 | + self.loader = self.model.loader( |
| 24 | + batch_size=batch_size, shuffle=True, num_workers=self.num_workers |
| 25 | + ) |
| 26 | + self.optimizer = torch.optim.SparseAdam(self.model.parameters(), lr=learning_rate) |
| 27 | + self.model.train() |
| 28 | + total_loss = [0] * epochs |
| 29 | + for epoch in range(epochs): |
| 30 | + for pos_rw, neg_rw in self.loader: |
| 31 | + self.optimizer.zero_grad() |
| 32 | + loss = self.model.loss(pos_rw.to(self.model.device), neg_rw.to(self.model.device)) |
| 33 | + loss.backward() |
| 34 | + self.optimizer.step() |
| 35 | + total_loss[epoch] += loss.item() |
| 36 | + total_loss[epoch] /= len(self.loader) |
| 37 | + if self.logging: |
| 38 | + print(f"Epoch: {epoch}, Loss: {total_loss[epoch]}") |
| 39 | + return sum(total_loss) / epochs |
| 40 | + |
| 41 | + def transform(self, nodes=None, type_=np.ndarray): |
| 42 | + if nodes is None: |
| 43 | + nodes = torch.arange(self.model.num_nodes) |
| 44 | + if type_ is np.ndarray: |
| 45 | + return self.model(nodes).detach().cpu().numpy() |
| 46 | + return self.model(nodes).detach() |
| 47 | + |
| 48 | + def fit_transform(self, epochs=1, learning_rate=.1, batch_size=128, nodes=None, type_=np.ndarray): |
| 49 | + self.fit(epochs, learning_rate, batch_size) |
| 50 | + return self.transform(nodes, type_) |
| 51 | + |
| 52 | + |
| 53 | + |
| 54 | + |
| 55 | + |
| 56 | + |
| 57 | + |
| 58 | + |
| 59 | + |
0 commit comments