-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rhistory
512 lines (512 loc) · 20.2 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
filter(ppd_id == "NULL")
# Plans collected in Reason that do not have ppd_id
all_plans_2021_2022_all_ids %>% select(plan_id, ppd_id, plan_name_hgarb, plan_name_legacydatabase) %>%
distinct() %>%
filter(ppd_id != "NULL")
all_plans_2021_2022_all_ids %>% select(plan_id, ppd_id, plan_name_hgarb, plan_name_legacydatabase) %>%
distinct()
planid_planname_ppdid_legacydatabase
planid_planname_ppdid_legacydatabase %>% filter(ppd_id != "NULL")
planid_planname_ppdid_legacydatabase
planid_planname_ppdid_legacydatabase %>% filter(ppd_id != "NULL")
planid_planname_ppdid_legacydatabase %>% filter(ppd_id != "NULL")
planid_planname_ppdid_legacydatabase %>% filter(ppd_id != "NULL") %>% write.csv("linking_reasonPlanID_ppdID.csv")
View(ppd_plans_name)
planid_planname_ppdid_legacydatabase
planid_planname_ppdid_legacydatabase %>% filter(ppd_id == "NULL")
planid_planname_ppdid_legacydatabase %>% filter(ppd_id != "NULL")
planid_planname_ppdid_legacydatabase %>% filter(ppd_id != "NULL") %>% write.csv("linking_reasonPlanID_ppdID.csv")
planid_planname_ppdid_legacydatabase %>% filter(ppd_id != "NULL") %>% write.csv("output/linking_reasonPlanID_ppdID.csv")
filelist_2023 <- list.files("data/2023", pattern = "_2023.xlsx")
filelist_2023
filelist_2023 <- list.files("data/2023", pattern = "_2023.xlsx")
df = data.frame()
for (filename in filelist_2023) {
plan <- read_1_file("data/2023", filename)
df = rbind(df, plan) %>% distinct()
}
filelist_2023
read_1_file("data/2023", "Alabama_JRF_updated_2023.xlsx")
read_1_file <- function (folder, filename) {
filename = paste0(folder, filename)
### sheet 1
s1 = import(filename, sheet = "GASB 68", skip = 1) %>% clean_names() %>%
filter(!is.na(fye)) %>% slice(1:9) %>%
# Differentiate some cols from sheet 1 & sheet 3
setnames(
old = c("adec_amt", "adec_paid_amt", "adec_missed"),
new = c(paste0(c("adec_amt", "adec_paid_amt", "adec_missed"), "_from_gasb")))
### sheet 2
s2 = import(filename, sheet = "Actuarial Valuation", skip = 1) %>% #"Actuarial Valuation"
clean_names() %>%
filter(!is.na(fye)) %>% slice(1:22) %>%
mutate(fye = as.double(fye)) %>% # solve a few cases in sheet 2
# Differentiate some cols from sheet 2 & sheet 3
setnames(
old = c("actuarial_return", "market_return","ava" , "aal","ual", "funded_ratio_old", "payroll"),
new = c(paste0(c("actuarial_return", "market_return","ava" , "aal", "ual", "funded_ratio_old", "payroll"), "_from_valuation")))
###sheet 3
s3 = import(filename, sheet = "CAFR", skip = 1) %>% #"CAFR"
clean_names() %>%
filter(!is.na(fye)) %>% slice(1:22) %>%
# Differentiate some cols from sheet 2 & sheet 3
setnames(old = c("actuarial_return", "market_return", "ava", "aal", "ual", "funded_ratio_old",
"payroll"),
new = c(paste0(c("actuarial_return", "market_return", "ava", "aal", "ual", "funded_ratio_old",
"payroll"), "_from_acfr"))) %>%
# Differentiate sheet 1 & sheet 3
setnames(
old = c("adec_amt", "adec_paid_amt", "adec_missed"),
new = c(paste0(c("adec_amt", "adec_paid_amt", "adec_missed"), "_from_acfr")))
# extract plan_id
plan_id <- import(filename, sheet = "Database Input") %>%
select(2) %>% colnames()
result <- s1 %>%
full_join(s2, by = c("full_name", "fye")) %>%
full_join(s3, by = c("full_name", "fye")) %>%
arrange(fye) %>%
#adding plan_id
mutate(plan_id = plan_id)
return(result)
}
#folder = "data/HGarb_Updates_2022/"
# Test 1 case
read_1_file("data/HGarb_Updates_2022/", "Alabama_ERS_updated_2022.xlsx")
read_1_file("data/2023", "Alabama_JRF_updated_2023.xlsx")
read_1_file("data/2023", "Alabama_JRF_updated_2022.xlsx")
read_1_file <- function (folder, filename) {
filename = paste0(folder, filename)
print(filename)
### sheet 1
s1 = import(filename, sheet = "GASB 68", skip = 1) %>% clean_names() %>%
filter(!is.na(fye)) %>% slice(1:9) %>%
# Differentiate some cols from sheet 1 & sheet 3
setnames(
old = c("adec_amt", "adec_paid_amt", "adec_missed"),
new = c(paste0(c("adec_amt", "adec_paid_amt", "adec_missed"), "_from_gasb")))
### sheet 2
s2 = import(filename, sheet = "Actuarial Valuation", skip = 1) %>% #"Actuarial Valuation"
clean_names() %>%
filter(!is.na(fye)) %>% slice(1:22) %>%
mutate(fye = as.double(fye)) %>% # solve a few cases in sheet 2
# Differentiate some cols from sheet 2 & sheet 3
setnames(
old = c("actuarial_return", "market_return","ava" , "aal","ual", "funded_ratio_old", "payroll"),
new = c(paste0(c("actuarial_return", "market_return","ava" , "aal", "ual", "funded_ratio_old", "payroll"), "_from_valuation")))
###sheet 3
s3 = import(filename, sheet = "CAFR", skip = 1) %>% #"CAFR"
clean_names() %>%
filter(!is.na(fye)) %>% slice(1:22) %>%
# Differentiate some cols from sheet 2 & sheet 3
setnames(old = c("actuarial_return", "market_return", "ava", "aal", "ual", "funded_ratio_old",
"payroll"),
new = c(paste0(c("actuarial_return", "market_return", "ava", "aal", "ual", "funded_ratio_old",
"payroll"), "_from_acfr"))) %>%
# Differentiate sheet 1 & sheet 3
setnames(
old = c("adec_amt", "adec_paid_amt", "adec_missed"),
new = c(paste0(c("adec_amt", "adec_paid_amt", "adec_missed"), "_from_acfr")))
# extract plan_id
plan_id <- import(filename, sheet = "Database Input") %>%
select(2) %>% colnames()
result <- s1 %>%
full_join(s2, by = c("full_name", "fye")) %>%
full_join(s3, by = c("full_name", "fye")) %>%
arrange(fye) %>%
#adding plan_id
mutate(plan_id = plan_id)
return(result)
}
#folder = "data/HGarb_Updates_2022/"
# Test 1 case
read_1_file("data/HGarb_Updates_2022/", "Alabama_ERS_updated_2022.xlsx")
read_1_file("data/2023", "Alabama_JRF_updated_2022.xlsx")
read_1_file("data/2023/", "Alabama_JRF_updated_2022.xlsx")
read_1_file <- function (folder, filename) {
filename = paste0(folder, filename)
### sheet 1
s1 = import(filename, sheet = "GASB 68", skip = 1) %>% clean_names() %>%
filter(!is.na(fye)) %>% slice(1:9) %>%
# Differentiate some cols from sheet 1 & sheet 3
setnames(
old = c("adec_amt", "adec_paid_amt", "adec_missed"),
new = c(paste0(c("adec_amt", "adec_paid_amt", "adec_missed"), "_from_gasb")))
### sheet 2
s2 = import(filename, sheet = "Actuarial Valuation", skip = 1) %>% #"Actuarial Valuation"
clean_names() %>%
filter(!is.na(fye)) %>% slice(1:22) %>%
mutate(fye = as.double(fye)) %>% # solve a few cases in sheet 2
# Differentiate some cols from sheet 2 & sheet 3
setnames(
old = c("actuarial_return", "market_return","ava" , "aal","ual", "funded_ratio_old", "payroll"),
new = c(paste0(c("actuarial_return", "market_return","ava" , "aal", "ual", "funded_ratio_old", "payroll"), "_from_valuation")))
###sheet 3
s3 = import(filename, sheet = "CAFR", skip = 1) %>% #"CAFR"
clean_names() %>%
filter(!is.na(fye)) %>% slice(1:22) %>%
# Differentiate some cols from sheet 2 & sheet 3
setnames(old = c("actuarial_return", "market_return", "ava", "aal", "ual", "funded_ratio_old",
"payroll"),
new = c(paste0(c("actuarial_return", "market_return", "ava", "aal", "ual", "funded_ratio_old",
"payroll"), "_from_acfr"))) %>%
# Differentiate sheet 1 & sheet 3
setnames(
old = c("adec_amt", "adec_paid_amt", "adec_missed"),
new = c(paste0(c("adec_amt", "adec_paid_amt", "adec_missed"), "_from_acfr")))
# extract plan_id
plan_id <- import(filename, sheet = "Database Input") %>%
select(2) %>% colnames()
result <- s1 %>%
full_join(s2, by = c("full_name", "fye")) %>%
full_join(s3, by = c("full_name", "fye")) %>%
arrange(fye) %>%
#adding plan_id
mutate(plan_id = plan_id)
return(result)
}
filelist_2023 <- list.files("data/2023", pattern = "_2023.xlsx")
df = data.frame()
for (filename in filelist_2023) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
df = data.frame()
for (filename in filelist_2023[1:10]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
df_2023 <- df
df_2023
df_2023_1_10 <- df
df_2023_1_10
df = data.frame()
for (filename in filelist_2023[11:20]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
for (filename in filelist_2023[11:15]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
for (filename in filelist_2023[11:12]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
for (filename in filelist_2023[12:13]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
for (filename in filelist_2023[13:14]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
for (filename in filelist_2023[15]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
filelist_2023[15]
for (filename in filelist_2023[16:20]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
for (filename in filelist_2023[21:30]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
for (filename in filelist_2023[31:40]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
for (filename in filelist_2023[31:35]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
for (filename in filelist_2023[36:39]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
for (filename in filelist_2023[36:38]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
for (filename in filelist_2023[36:37]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
for (filename in filelist_2023[38]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
filelist_2023[38]
for (filename in filelist_2023[39:45]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
filelist_2023
for (filename in filelist_2023[39:57]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
filelist_2023 <- list.files("data/2023", pattern = "_2023.xlsx")
df = data.frame()
for (filename in filelist_2023[1:14, 16:37, 39:57]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
for (filename in filelist_2023[c(1:14, 16:37, 39:57)]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
df_2023_regular <- df
df_2023_regular
df = data.frame()
for (filename in filelist_2023[15, 38]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
for (filename in filelist_2023[c(15, 38)]) {
plan <- read_1_file("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
filelist_2023[15]
s1 = import("data/2023/Delaware_PERS_NSPPP_updated_2023.xlsx", sheet = "GASB 68", skip = 1) %>% clean_names() %>%
filter(!is.na(fye)) %>% slice(1:9) %>%
# Differentiate some cols from sheet 1 & sheet 3
setnames(
old = c("adec_amt", "adec_paid_amt", "adec_missed"),
new = c(paste0(c("adec_amt", "adec_paid_amt", "adec_missed"), "_from_gasb")))
s1
import("data/2023/Delaware_PERS_NSPPP_updated_2023.xlsx", sheet = "GASB 68", skip = 1) %>% clean_names()
import("data/2023/Delaware_PERS_NSPPP_updated_2023.xlsx", sheet = "GASB 68", skip = 1) %>% clean_names() %>%
filter(!is.na(fye)) %>% slice(1:10)
s1 = import("data/2023/Delaware_PERS_NSPPP_updated_2023.xlsx", sheet = "GASB 68", skip = 1) %>% clean_names() %>%
filter(!is.na(fye)) %>% slice(1:10) %>%
# Differentiate some cols from sheet 1 & sheet 3
setnames(
old = c("adec_amt", "adec_paid_amt", "adec_missed"),
new = c(paste0(c("adec_amt", "adec_paid_amt", "adec_missed"), "_from_gasb")))
s1
import(filename, sheet = "Actuarial Valuation", skip = 1) %>% #"Actuarial Valuation"
clean_names()
### sheet 2
s2 = import("data/2023/Delaware_PERS_NSPPP_updated_2023.xlsx", sheet = "Actuarial Valuation", skip = 1) %>% #"Actuarial Valuation"
clean_names() %>%
filter(!is.na(fye)) %>% slice(1:22) %>%
mutate(fye = as.double(fye)) %>% # solve a few cases in sheet 2
# Differentiate some cols from sheet 2 & sheet 3
setnames(
old = c("actuarial_return", "market_return","ava" , "aal","ual", "funded_ratio_old", "payroll"),
new = c(paste0(c("actuarial_return", "market_return","ava" , "aal", "ual", "funded_ratio_old", "payroll"), "_from_valuation")))
s2
import("data/2023/Delaware_PERS_NSPPP_updated_2023.xlsx", sheet = "Actuarial Valuation", skip = 1) %>% #"Actuarial Valuation"
clean_names() %>%
filter(!is.na(fye))
### sheet 2
s2 = import("data/2023/Delaware_PERS_NSPPP_updated_2023.xlsx", sheet = "Actuarial Valuation", skip = 1) %>% #"Actuarial Valuation"
clean_names() %>%
filter(!is.na(fye)) %>% slice(1:23) %>%
mutate(fye = as.double(fye)) %>% # solve a few cases in sheet 2
# Differentiate some cols from sheet 2 & sheet 3
setnames(
old = c("actuarial_return", "market_return","ava" , "aal","ual", "funded_ratio_old", "payroll"),
new = c(paste0(c("actuarial_return", "market_return","ava" , "aal", "ual", "funded_ratio_old", "payroll"), "_from_valuation")))
###sheet 3
s3 = import(filename, sheet = "CAFR", skip = 1) %>% #"CAFR"
clean_names() %>%
filter(!is.na(fye)) %>% slice(1:23) %>%
# Differentiate some cols from sheet 2 & sheet 3
setnames(old = c("actuarial_return", "market_return", "ava", "aal", "ual", "funded_ratio_old",
"payroll"),
new = c(paste0(c("actuarial_return", "market_return", "ava", "aal", "ual", "funded_ratio_old",
"payroll"), "_from_acfr"))) %>%
# Differentiate sheet 1 & sheet 3
setnames(
old = c("adec_amt", "adec_paid_amt", "adec_missed"),
new = c(paste0(c("adec_amt", "adec_paid_amt", "adec_missed"), "_from_acfr")))
###sheet 3
s3 = import("data/2023/Delaware_PERS_NSPPP_updated_2023.xlsx", sheet = "CAFR", skip = 1) %>% #"CAFR"
clean_names() %>%
filter(!is.na(fye)) %>% slice(1:23) %>%
# Differentiate some cols from sheet 2 & sheet 3
setnames(old = c("actuarial_return", "market_return", "ava", "aal", "ual", "funded_ratio_old",
"payroll"),
new = c(paste0(c("actuarial_return", "market_return", "ava", "aal", "ual", "funded_ratio_old",
"payroll"), "_from_acfr"))) %>%
# Differentiate sheet 1 & sheet 3
setnames(
old = c("adec_amt", "adec_paid_amt", "adec_missed"),
new = c(paste0(c("adec_amt", "adec_paid_amt", "adec_missed"), "_from_acfr")))
s3
read_1_file_2023 <- function (folder, filename) {
filename = paste0(folder, filename)
### sheet 1
s1 = import(filename, sheet = "GASB 68", skip = 1) %>% clean_names() %>%
filter(!is.na(fye)) %>% slice(1:10) %>%
# Differentiate some cols from sheet 1 & sheet 3
setnames(
old = c("adec_amt", "adec_paid_amt", "adec_missed"),
new = c(paste0(c("adec_amt", "adec_paid_amt", "adec_missed"), "_from_gasb")))
### sheet 2
s2 = import(filename, sheet = "Actuarial Valuation", skip = 1) %>% #"Actuarial Valuation"
clean_names() %>%
filter(!is.na(fye)) %>% slice(1:23) %>%
mutate(fye = as.double(fye)) %>% # solve a few cases in sheet 2
# Differentiate some cols from sheet 2 & sheet 3
setnames(
old = c("actuarial_return", "market_return","ava" , "aal","ual", "funded_ratio_old", "payroll"),
new = c(paste0(c("actuarial_return", "market_return","ava" , "aal", "ual", "funded_ratio_old", "payroll"), "_from_valuation")))
###sheet 3
s3 = import(filename, sheet = "CAFR", skip = 1) %>% #"CAFR"
clean_names() %>%
filter(!is.na(fye)) %>% slice(1:23) %>%
# Differentiate some cols from sheet 2 & sheet 3
setnames(old = c("actuarial_return", "market_return", "ava", "aal", "ual", "funded_ratio_old",
"payroll"),
new = c(paste0(c("actuarial_return", "market_return", "ava", "aal", "ual", "funded_ratio_old",
"payroll"), "_from_acfr"))) %>%
# Differentiate sheet 1 & sheet 3
setnames(
old = c("adec_amt", "adec_paid_amt", "adec_missed"),
new = c(paste0(c("adec_amt", "adec_paid_amt", "adec_missed"), "_from_acfr")))
# extract plan_id
plan_id <- import(filename, sheet = "Database Input") %>%
select(2) %>% colnames()
result <- s1 %>%
full_join(s2, by = c("full_name", "fye")) %>%
full_join(s3, by = c("full_name", "fye")) %>%
arrange(fye) %>%
#adding plan_id
mutate(plan_id = plan_id)
return(result)
}
read_1_file_2023(filelist_2023[15])
filelist_2023[15]
df = data.frame()
for (filename in filelist_2023[c(15, 38)]) {
plan <- read_1_file_2023("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
s1
s2
s3
# extract plan_id
plan_id <- import("data/2023/Delaware_PERS_NSPPP_updated_2023.xlsx", sheet = "Database Input") %>%
select(2) %>% colnames()
plan_id
result <- s1 %>%
full_join(s2, by = c("full_name", "fye")) %>%
full_join(s3, by = c("full_name", "fye")) %>%
arrange(fye) %>%
#adding plan_id
mutate(plan_id = plan_id)
result
read_1_file_2023(filelist_2023[15])
read_1_file_2023("data/2023/", filelist_2023[15])
read_1_file_2023("data/2023/", filelist_2023[38])
read_1_file_2023("data/2023/", filelist_2023[15])
read_1_file_2023("data/2023/", filelist_2023[15]) %>% colnames() ->test1
read_1_file_2023("data/2023/", filelist_2023[38]) %>% colnames() ->test2
setdiff(test1, test2)
setdiff(test2, test1)
read_1_file_2023("data/2023/", filelist_2023[30]) %>% colnames() ->test3
setdiff(test2, test3)
setdiff(test3, test1)
setdiff(test1, test2)
setdiff(test1, test3)
setdiff(test1, test2)
test1
test3
read_1_file_2023("data/2023/", filelist_2023[31]) %>% colnames() ->test3
test3
setdiff(test1, test2)
read_1_file_2023("data/2023/", filelist_2023[15]) %>%
colnames()
setdiff(test1, test2)
setdiff(test1, test3)
setdiff(test1, test3)
read_1_file_2023("data/2023/", filelist_2023[32]) %>% colnames() ->test3
setdiff(test1, test3)
test1
test1 %>% select(x5)
read_1_file_2023("data/2023/", filelist_2023[15]) %>% select(x5)
s1 %>% select(x5)
s2 %>% select(x5)
filelist_2023[15]
import("data/2023/Delaware_PERS_NSPPP_updated_2023.xlsx", sheet = "Actuarial Valuation", skip = 1) %>% #"Actuarial Valuation"
clean_names() %>%
filter(!is.na(fye)) %>% slice(1:23)
import("data/2023/Michigan_JRS_updated_2023.xlsx", sheet = "Actuarial Valuation", skip = 1) %>% #"Actuarial Valuation"
clean_names() %>%
filter(!is.na(fye))
read_1_file_2023("data/2023/", "Delaware_PERS_NSPPP_updated_2023.xlsx")
read_1_file_2023("data/2023/", "Delaware_PERS_NSPPP_updated_2023.xlsx") %>%
select(-x5)
df_15 <- read_1_file_2023("data/2023/", filelist_2023[15]) %>%
select(-x5)
df_15
read_1_file_2023("data/2023/", filelist_2023[38]) %>% colnames() ->test2
setdiff(test2, test3) # 15 has these that others dont: x5, "tot_total_amt"
df_38 <- read_1_file_2023("data/2023/", filelist_2023[15]) %>%
rename(tot_total_amt = x12)
filelist_2023[38]
df_38 <- read_1_file_2023("data/2023/", filelist_2023[38]) %>%
rename(tot_total_amt = x12)
# exceptions
df_2023_15 <- read_1_file_2023("data/2023/", filelist_2023[15]) %>%
select(-x5)
df_2023_38 <- read_1_file_2023("data/2023/", filelist_2023[38]) %>%
rename(tot_total_amt = x12)
filelist_2023 <- list.files("data/2023", pattern = "_2023.xlsx")
read_1_file_2023 <- function (folder, filename) {
filename = paste0(folder, filename)
### sheet 1
s1 = import(filename, sheet = "GASB 68", skip = 1) %>% clean_names() %>%
filter(!is.na(fye)) %>% slice(1:10) %>%
# Differentiate some cols from sheet 1 & sheet 3
setnames(
old = c("adec_amt", "adec_paid_amt", "adec_missed"),
new = c(paste0(c("adec_amt", "adec_paid_amt", "adec_missed"), "_from_gasb")))
### sheet 2
s2 = import(filename, sheet = "Actuarial Valuation", skip = 1) %>% #"Actuarial Valuation"
clean_names() %>%
filter(!is.na(fye)) %>% slice(1:23) %>%
mutate(fye = as.double(fye)) %>% # solve a few cases in sheet 2
# Differentiate some cols from sheet 2 & sheet 3
setnames(
old = c("actuarial_return", "market_return","ava" , "aal","ual", "funded_ratio_old", "payroll"),
new = c(paste0(c("actuarial_return", "market_return","ava" , "aal", "ual", "funded_ratio_old", "payroll"), "_from_valuation")))
###sheet 3
s3 = import(filename, sheet = "CAFR", skip = 1) %>% #"CAFR"
clean_names() %>%
filter(!is.na(fye)) %>% slice(1:23) %>%
# Differentiate some cols from sheet 2 & sheet 3
setnames(old = c("actuarial_return", "market_return", "ava", "aal", "ual", "funded_ratio_old",
"payroll"),
new = c(paste0(c("actuarial_return", "market_return", "ava", "aal", "ual", "funded_ratio_old",
"payroll"), "_from_acfr"))) %>%
# Differentiate sheet 1 & sheet 3
setnames(
old = c("adec_amt", "adec_paid_amt", "adec_missed"),
new = c(paste0(c("adec_amt", "adec_paid_amt", "adec_missed"), "_from_acfr")))
# extract plan_id
plan_id <- import(filename, sheet = "Database Input") %>%
select(2) %>% colnames()
result <- s1 %>%
full_join(s2, by = c("full_name", "fye")) %>%
full_join(s3, by = c("full_name", "fye")) %>%
arrange(fye) %>%
#adding plan_id
mutate(plan_id = plan_id)
return(result)
}
df = data.frame()
for (filename in filelist_2023[c(1:14, 16:37, 39:57)]) {
plan <- read_1_file_2023("data/2023/", filename)
df = rbind(df, plan) %>% distinct()
}
df_2023_regular <- df
all_plans_2023 <- rbind(df_2023_regular, df_2023_15, df_2023_38)
all_plans_2023
all_plans_2023 %>% select(full_name) %>% distinct()
all_plans_2023 %>% write.csv("all_plans_2023.csv")
all_plans_2023 %>% write.csv("output/all_plans_2023.csv")