@@ -151,109 +151,3 @@ test_that("workflow with tunable recipe and model", {
151
151
c(rep(" model_spec" , 9 ), rep(" recipe" , 4 ))
152
152
)
153
153
})
154
-
155
- # ------------------------------------------------------------------------------
156
- # test specific values
157
-
158
-
159
- test_that(' test tunable parameter values' , {
160
- # depends on whether tune >= 0.1.6.9001 is installed
161
- skip_if(inherits(try(tunable(), silent = TRUE ), " try-error" ))
162
-
163
- print_parameters <- function (x ) {
164
- params <- tunable(x )
165
- info <- params $ call_info
166
- names(info ) <- params $ names
167
- print(info )
168
- invisible (NULL )
169
- }
170
-
171
- expect_snapshot(
172
- boost_tree(trees = tune(), min_n = tune(), sample_size = tune()) %> %
173
- set_engine(' C5.0' ) %> %
174
- print_parameters()
175
- )
176
-
177
- expect_snapshot(
178
- rules :: C5_rules(trees = tune(), min_n = tune()) %> %
179
- set_engine(' C5.0' ) %> %
180
- print_parameters()
181
- )
182
-
183
- expect_snapshot(
184
- decision_tree(min_n = tune()) %> %
185
- set_engine(' C5.0' ) %> %
186
- print_parameters()
187
- )
188
-
189
- expect_snapshot(
190
- logistic_reg(penalty = tune()) %> %
191
- set_engine(' brulee' ) %> %
192
- print_parameters()
193
- )
194
-
195
- expect_snapshot(
196
- mars(prod_degree = tune()) %> %
197
- set_engine(' earth' ) %> %
198
- set_mode(' classification' ) %> %
199
- print_parameters()
200
- )
201
-
202
- expect_snapshot(
203
- multinom_reg(penalty = tune()) %> %
204
- set_engine(' brulee' ) %> %
205
- print_parameters()
206
- )
207
-
208
- expect_snapshot(
209
- rand_forest(mtry = tune(), min_n = tune()) %> %
210
- set_engine(' randomForest' ) %> %
211
- set_mode(' classification' ) %> %
212
- print_parameters()
213
- )
214
-
215
- expect_snapshot(
216
- rand_forest(mtry = tune(), min_n = tune()) %> %
217
- set_engine(' ranger' ) %> %
218
- set_mode(' classification' ) %> %
219
- print_parameters()
220
- )
221
-
222
- expect_snapshot(
223
- linear_reg(penalty = tune()) %> %
224
- set_engine(' brulee' ) %> %
225
- print_parameters()
226
- )
227
-
228
- expect_snapshot(
229
- boost_tree(
230
- tree_depth = tune(),
231
- trees = tune(),
232
- learn_rate = tune(),
233
- min_n = tune(),
234
- loss_reduction = tune(),
235
- sample_size = tune(),
236
- stop_iter = tune()
237
- ) %> %
238
- set_engine(' xgboost' ) %> %
239
- set_mode(' classification' ) %> %
240
- print_parameters()
241
- )
242
-
243
- expect_snapshot(
244
- mlp(
245
- hidden_units = tune(),
246
- penalty = tune(),
247
- dropout = tune(),
248
- epochs = tune(),
249
- activation = tune()
250
- ) %> %
251
- set_engine(' brulee' ) %> %
252
- set_mode(' classification' ) %> %
253
- print_parameters()
254
- )
255
-
256
- })
257
-
258
-
259
-
0 commit comments