Skip to content

Commit 00ca1b8

Browse files
committed
remove skipped tests
instead of re-enabling as in #215, test where functionality is defined in tidymodels/parsnip#1105
1 parent ea7392a commit 00ca1b8

File tree

1 file changed

+0
-106
lines changed

1 file changed

+0
-106
lines changed

tests/testthat/test-tunable.R

-106
Original file line numberDiff line numberDiff line change
@@ -151,109 +151,3 @@ test_that("workflow with tunable recipe and model", {
151151
c(rep("model_spec", 9), rep("recipe", 4))
152152
)
153153
})
154-
155-
# ------------------------------------------------------------------------------
156-
# test specific values
157-
158-
159-
test_that('test tunable parameter values', {
160-
# depends on whether tune >= 0.1.6.9001 is installed
161-
skip_if(inherits(try(tunable(), silent = TRUE), "try-error"))
162-
163-
print_parameters <- function(x) {
164-
params <- tunable(x)
165-
info <- params$call_info
166-
names(info) <- params$names
167-
print(info)
168-
invisible(NULL)
169-
}
170-
171-
expect_snapshot(
172-
boost_tree(trees = tune(), min_n = tune(), sample_size = tune()) %>%
173-
set_engine('C5.0') %>%
174-
print_parameters()
175-
)
176-
177-
expect_snapshot(
178-
rules::C5_rules(trees = tune(), min_n = tune()) %>%
179-
set_engine('C5.0') %>%
180-
print_parameters()
181-
)
182-
183-
expect_snapshot(
184-
decision_tree(min_n = tune()) %>%
185-
set_engine('C5.0') %>%
186-
print_parameters()
187-
)
188-
189-
expect_snapshot(
190-
logistic_reg(penalty = tune()) %>%
191-
set_engine('brulee') %>%
192-
print_parameters()
193-
)
194-
195-
expect_snapshot(
196-
mars(prod_degree = tune()) %>%
197-
set_engine('earth') %>%
198-
set_mode('classification') %>%
199-
print_parameters()
200-
)
201-
202-
expect_snapshot(
203-
multinom_reg(penalty = tune()) %>%
204-
set_engine('brulee') %>%
205-
print_parameters()
206-
)
207-
208-
expect_snapshot(
209-
rand_forest(mtry = tune(), min_n = tune()) %>%
210-
set_engine('randomForest') %>%
211-
set_mode('classification') %>%
212-
print_parameters()
213-
)
214-
215-
expect_snapshot(
216-
rand_forest(mtry = tune(), min_n = tune()) %>%
217-
set_engine('ranger') %>%
218-
set_mode('classification') %>%
219-
print_parameters()
220-
)
221-
222-
expect_snapshot(
223-
linear_reg(penalty = tune()) %>%
224-
set_engine('brulee') %>%
225-
print_parameters()
226-
)
227-
228-
expect_snapshot(
229-
boost_tree(
230-
tree_depth = tune(),
231-
trees = tune(),
232-
learn_rate = tune(),
233-
min_n = tune(),
234-
loss_reduction = tune(),
235-
sample_size = tune(),
236-
stop_iter = tune()
237-
) %>%
238-
set_engine('xgboost') %>%
239-
set_mode('classification') %>%
240-
print_parameters()
241-
)
242-
243-
expect_snapshot(
244-
mlp(
245-
hidden_units = tune(),
246-
penalty = tune(),
247-
dropout = tune(),
248-
epochs = tune(),
249-
activation = tune()
250-
) %>%
251-
set_engine('brulee') %>%
252-
set_mode('classification') %>%
253-
print_parameters()
254-
)
255-
256-
})
257-
258-
259-

0 commit comments

Comments
 (0)