Skip to content

Commit 9d2d5df

Browse files
committed
edits
1 parent afd54da commit 9d2d5df

File tree

3 files changed

+3
-26
lines changed

3 files changed

+3
-26
lines changed

DESCRIPTION

+2
Original file line numberDiff line numberDiff line change
@@ -24,6 +24,8 @@ Imports:
2424
tidybulk,
2525
tidygate,
2626
scater,
27+
scran,
28+
batchelor,
2729
stats,
2830
utils,
2931
tibble,

vignettes/supplementary.Rmd

-26
Original file line numberDiff line numberDiff line change
@@ -13,10 +13,6 @@ knitr::opts_chunk$set(echo = TRUE)
1313

1414

1515
```{r message = FALSE}
16-
library(batchelor)
17-
library(igraph)
18-
library(scran)
19-
library(magrittr)
2016
library(ggplot2)
2117
library(plotly)
2218
library(dplyr)
@@ -96,25 +92,3 @@ sce_obj_gamma_delta <-
9692
9793
filter(gate == 1)
9894
```
99-
100-
For comparison, we show the alternative using base R and SingleCellExperiment.
101-
102-
```{r}
103-
counts_positive <-
104-
assay(sce_obj)[c("CD3D", "TRDC", "TRGC1", "TRGC2"),] |>
105-
colSums() |>
106-
scales::rescale(to=c(0,1))
107-
108-
counts_negative <-
109-
assay(sce_obj)[c("CD8A", "CD8B"),] |>
110-
colSums() |>
111-
scales::rescale(to=c(0,1))
112-
113-
sce_obj$signature_score <- counts_positive - counts_negative
114-
115-
# This is not reproducible (in contrast to tidygate)
116-
sce_obj$within_gate <- colnames(sce_obj) %in% CellSelector(plot = p)
117-
118-
sce_obj_gamma_delta <- sce_obj[, sce_obj$within_gate == TRUE]
119-
```
120-

vignettes/tidytranscriptomics_case_study.Rmd

+1
Original file line numberDiff line numberDiff line change
@@ -342,6 +342,7 @@ We can then focus on just these gamma delta T cells and chain Bioconductor and t
342342
```{r eval = FALSE}
343343
library(batchelor)
344344
library(igraph)
345+
library(scater)
345346
library(scran)
346347
library(magrittr)
347348

0 commit comments

Comments
 (0)