18
18
# _sch: teacher rated
19
19
# _chi: child rated (self-report)
20
20
#
21
- # SDQ scores were already pro-rated. Pro-rating of MFQ done via a function I wrote.
21
+ # SDQ scores were already pro-rated. Pro-rating of MFQ done via a function I
22
+ # wrote.
22
23
23
24
source(" ./useful-code-r/code/functions/proRate.R" )
24
25
@@ -43,26 +44,31 @@ chi_mh.varlist <- subset(current, name %in% c("ta5020", "ta5021", "ta5022",
43
44
" ff6513" , " ff6514" , " ff6515" , " fg7210" , " fg7212" , " fg7213" ,
44
45
" fg7214" , " fg7215" , " fg7216" , " fg7218" , " fg7219" , " fg7221" ,
45
46
" fg7222" , " fg7223" , " fg7224" , " fg7225" , " ccs4500" , " ccs4502" ,
46
- " ccs4503" , " ccs4504" , " ccs4505" , " ccs4506" , " ccs4508" , " ccs4509" ,
47
- " ccs4511" , " ccs4512" , " ccs4513" , " ccs4514" , " ccs4515" , " CCXD900" ,
48
- " CCXD902" , " CCXD903" , " CCXD904" , " CCXD905" , " CCXD906" , " CCXD908" ,
49
- " CCXD909" , " CCXD911" , " CCXD912" , " CCXD913" , " CCXD914" , " CCXD915" ,
50
- " cct2700" , " cct2701" , " cct2702" , " cct2703" , " cct2704" , " cct2705" ,
51
- " cct2706" , " cct2707" , " cct2708" , " cct2709" , " cct2710" , " cct2711" ,
52
- " cct2712" , " YPA2000" , " YPA2010" , " YPA2020" , " YPA2030" , " YPA2040" ,
53
- " YPA2050" , " YPA2060" , " YPA2070" , " YPA2080" , " YPA2090" , " YPA2100" ,
54
- " YPA2110" , " YPA2120" , " YPB5000" , " YPB5010" , " YPB5030" , " YPB5040" ,
55
- " YPB5050" , " YPB5060" , " YPB5080" , " YPB5090" , " YPB5100" , " YPB5120" ,
56
- " YPB5130" , " YPB5150" , " YPB5170" , " YPC1650" , " YPC1651" , " YPC1653" ,
57
- " YPC1654" , " YPC1655" , " YPC1656" , " YPC1658" , " YPC1659" , " YPC1660" ,
58
- " YPC1662" , " YPC1663" , " YPC1665" , " YPC1667" , " j557a" , " j557d" ,
59
- " kq348c" , " kq348e" , " n8365a" , " n8365d" , " ku673b" , " ku707b" ,
60
- " ku709b" , " kw6100b" , " kw6602b" , " kw6604b" , " ta7025a" , " ta7025d" ,
61
- " tc4025a" , " tc4025d" , " sa163b" , " sa165b" , " se163b" , " se165b" ,
62
- " j557b" , " j557c" , " kq348d" , " kq348b" , " n8365b" , " n8365c" , " ku708b" ,
63
- " ku706b" , " kw6603b" , " kw6601b" , " ta7025b" , " ta7025c" , " tc4025b" ,
47
+ " ccs4503" , " ccs4504" , " ccs4505" , " ccs4506" , " ccs4508" ,
48
+ " ccs4509" , " ccs4511" , " ccs4512" , " ccs4513" , " ccs4514" ,
49
+ " ccs4515" , " CCXD900" , " CCXD902" , " CCXD903" , " CCXD904" ,
50
+ " CCXD905" , " CCXD906" , " CCXD908" , " CCXD909" , " CCXD911" ,
51
+ " CCXD912" , " CCXD913" , " CCXD914" , " CCXD915" , " cct2700" ,
52
+ " cct2701" , " cct2702" , " cct2703" , " cct2704" , " cct2705" ,
53
+ " cct2706" , " cct2707" , " cct2708" , " cct2709" , " cct2710" ,
54
+ " cct2711" , " cct2712" , " YPA2000" , " YPA2010" , " YPA2020" ,
55
+ " YPA2030" , " YPA2040" , " YPA2050" , " YPA2060" , " YPA2070" ,
56
+ " YPA2080" , " YPA2090" , " YPA2100" , " YPA2110" , " YPA2120" ,
57
+ " YPB5000" , " YPB5010" , " YPB5030" , " YPB5040" , " YPB5050" ,
58
+ " YPB5060" , " YPB5080" , " YPB5090" , " YPB5100" , " YPB5120" ,
59
+ " YPB5130" , " YPB5150" , " YPB5170" , " YPC1650" , " YPC1651" ,
60
+ " YPC1653" , " YPC1654" , " YPC1655" , " YPC1656" , " YPC1658" ,
61
+ " YPC1659" , " YPC1660" , " YPC1662" , " YPC1663" , " YPC1665" ,
62
+ " YPC1667" , " j557a" , " j557d" , " kq348c" , " kq348e" , " n8365a" ,
63
+ " n8365d" , " ku673b" , " ku707b" , " ku709b" , " kw6100b" , " kw6602b" ,
64
+ " kw6604b" , " ta7025a" , " ta7025d" , " tc4025a" , " tc4025d" ,
65
+ " sa163b" , " sa165b" , " se163b" , " se165b" , " j557b" , " j557c" ,
66
+ " kq348d" , " kq348b" , " n8365b" , " n8365c" , " ku708b" , " ku706b" ,
67
+ " kw6603b" , " kw6601b" , " ta7025b" , " ta7025c" , " tc4025b" ,
64
68
" tc4025c" , " sa164b" , " sa162b" , " se164b" , " se162b" , " FJCI602" ,
65
- " FJCI604" , " FJCI605" , " FJCI606" , " FJCI001" , " FJCI369" , " FJCI1001" ))
69
+ " FJCI604" , " FJCI605" , " FJCI606" , " FJCI001" , " FJCI369" ,
70
+ " FJCI1001" , " fd003c" , " ff0011a" , " fg0011a" , " ccs9991a" ,
71
+ " CCXD006" , " cct9991a" , " YPA9020" , " YPB9992" , " YPC2650" ))
66
72
67
73
chi_mh_mast.data <- extractVars(chi_mh.varlist )
68
74
@@ -78,33 +84,32 @@ mfq.tc.vars <- c("tc4030", "tc4031", "tc4032", "tc4033", "tc4034", "tc4035",
78
84
" tc4036" , " tc4037" , " tc4038" , " tc4039" , " tc4040" , " tc4041" ,
79
85
" tc4042" )
80
86
mfq.fd.vars <- c(" fddp110" , " fddp112" , " fddp113" , " fddp114" , " fddp115" ,
81
- " fddp116" , " fddp118" , " fddp119" , " fddp121" , " fddp122" , " fddp123 " ,
82
- " fddp124" , " fddp125" )
87
+ " fddp116" , " fddp118" , " fddp119" , " fddp121" , " fddp122" ,
88
+ " fddp123 " , " fddp124" , " fddp125" )
83
89
mfq.ff.vars <- c(" ff6500" , " ff6502" , " ff6503" , " ff6504" , " ff6505" , " ff6506" ,
84
90
" ff6508" , " ff6509" , " ff6511" , " ff6512" , " ff6513" , " ff6514" ,
85
91
" ff6515" )
86
92
mfq.fg.vars <- c(" fg7210" , " fg7212" , " fg7213" , " fg7214" , " fg7215" , " fg7216" ,
87
93
" fg7218" , " fg7219" , " fg7221" , " fg7222" , " fg7223" , " fg7224" ,
88
94
" fg7225" )
89
- mfq.ccs.vars <- c(" ccs4500" , " ccs4502" , " ccs4503" , " ccs4504" , " ccs4505" , " ccs4506" ,
90
- " ccs4508" , " ccs4509" , " ccs4511" , " ccs4512" , " ccs4513" , " ccs4514" ,
91
- " ccs4515" )
92
- mfq.ccx.vars <- c(" CCXD900" , " CCXD902" , " CCXD903" , " CCXD904" , " CCXD905" , " CCXD906" ,
93
- " CCXD908" , " CCXD909" , " CCXD911" , " CCXD912" , " CCXD913" , " CCXD914" ,
94
- " CCXD915" )
95
- mfq.cct.vars <- c(" cct2700" , " cct2701" , " cct2702" , " cct2703" , " cct2704" , " cct2705" ,
96
- " cct2706" , " cct2707" , " cct2708" , " cct2709" , " cct2710" , " cct2711" ,
97
- " cct2712" )
98
- mfq.ypa.vars <- c(" YPA2000" , " YPA2010" , " YPA2020" , " YPA2030" , " YPA2040" , " YPA2050" ,
99
- " YPA2060" , " YPA2070" , " YPA2080" , " YPA2090" , " YPA2100" , " YPA2110" ,
100
- " YPA2120" )
101
- mfq.ypb.vars <- c(" YPB5000" , " YPB5010" , " YPB5030" , " YPB5040" , " YPB5050" , " YPB5060" ,
102
- " YPB5080" , " YPB5090" , " YPB5100" , " YPB5120" , " YPB5130" , " YPB5150" ,
103
- " YPB5170" )
104
- mfq.ypc.vars <- c(" YPC1650" , " YPC1651" , " YPC1653" , " YPC1654" , " YPC1655" , " YPC1656" ,
105
- " YPC1658" , " YPC1659" , " YPC1660" , " YPC1662" , " YPC1663" , " YPC1665" ,
106
- " YPC1667" )
107
-
95
+ mfq.ccs.vars <- c(" ccs4500" , " ccs4502" , " ccs4503" , " ccs4504" , " ccs4505" ,
96
+ " ccs4506" , " ccs4508" , " ccs4509" , " ccs4511" , " ccs4512" ,
97
+ " ccs4513" , " ccs4514" , " ccs4515" )
98
+ mfq.ccx.vars <- c(" CCXD900" , " CCXD902" , " CCXD903" , " CCXD904" , " CCXD905" ,
99
+ " CCXD906" , " CCXD908" , " CCXD909" , " CCXD911" , " CCXD912" ,
100
+ " CCXD913" , " CCXD914" , " CCXD915" )
101
+ mfq.cct.vars <- c(" cct2700" , " cct2701" , " cct2702" , " cct2703" , " cct2704" ,
102
+ " cct2705" , " cct2706" , " cct2707" , " cct2708" , " cct2709" ,
103
+ " cct2710" , " cct2711" , " cct2712" )
104
+ mfq.ypa.vars <- c(" YPA2000" , " YPA2010" , " YPA2020" , " YPA2030" , " YPA2040" ,
105
+ " YPA2050" , " YPA2060" , " YPA2070" , " YPA2080" , " YPA2090" ,
106
+ " YPA2100" , " YPA2110" , " YPA2120" )
107
+ mfq.ypb.vars <- c(" YPB5000" , " YPB5010" , " YPB5030" , " YPB5040" , " YPB5050" ,
108
+ " YPB5060" , " YPB5080" , " YPB5090" , " YPB5100" , " YPB5120" ,
109
+ " YPB5130" , " YPB5150" , " YPB5170" )
110
+ mfq.ypc.vars <- c(" YPC1650" , " YPC1651" , " YPC1653" , " YPC1654" , " YPC1655" ,
111
+ " YPC1656" , " YPC1658" , " YPC1659" , " YPC1660" , " YPC1662" ,
112
+ " YPC1663" , " YPC1665" , " YPC1667" )
108
113
109
114
# ###############################################################################
110
115
# 3. Recode items and set missing values
@@ -114,8 +119,8 @@ chi_mh.data <- chi_mh.data %>%
114
119
funs(ifelse( . < 0 | . == 9 , NA , . )))
115
120
116
121
chi_mh.data <- chi_mh.data %> %
117
- mutate_at(vars(mfq.ta.vars , mfq.tc.vars , mfq.fd.vars , mfq.ff.vars , mfq.fg.vars ,
118
- mfq.ccs.vars , mfq.ccx.vars , mfq.cct.vars , mfq.ypa.vars ),
122
+ mutate_at(vars(mfq.ta.vars , mfq.tc.vars , mfq.fd.vars , mfq.ff.vars ,
123
+ mfq.fg.vars , mfq. ccs.vars , mfq.ccx.vars , mfq.cct.vars , mfq.ypa.vars ),
119
124
funs(3 - . ))
120
125
121
126
chi_mh.data <- chi_mh.data %> %
@@ -159,19 +164,30 @@ mfq_12_chi = proRate(chi_mh.data, mfq.ff.vars, 0),
159
164
mfq_13_chi = proRate(chi_mh.data , mfq.fg.vars , 0 ),
160
165
mfq_16_chi = proRate(chi_mh.data , mfq.ccs.vars , 0 ),
161
166
mfq_17_chi = proRate(chi_mh.data , mfq.ccx.vars , 0 ),
167
+ mfq_18_chi = proRate(chi_mh.data , mfq.cct.vars , 0 ),
162
168
mfq_21_chi = proRate(chi_mh.data , mfq.ypa.vars , 0 ),
163
169
mfq_22_chi = proRate(chi_mh.data , mfq.ypb.vars , 0 ),
164
170
mfq_23_chi = proRate(chi_mh.data , mfq.ypc.vars , 0 ),
165
171
mfq_9_mat = ku673b ,
166
172
mfq_11_mat = kw6100b ,
167
173
mfq_13_mat = proRate(chi_mh.data , mfq.ta.vars , 0 ),
168
- mfq_16_mat = proRate(chi_mh.data , mfq.tc.vars , 0 ))
174
+ mfq_16_mat = proRate(chi_mh.data , mfq.tc.vars , 0 ),
175
+ mfq_10_chi_age = fd003c ,
176
+ mfq_12_chi_age = ff0011a ,
177
+ mfq_13_chi_age = fg0011a ,
178
+ mfq_16_chi_age = ccs9991a ,
179
+ mfq_17_chi_age = CCXD006 ,
180
+ mfq_18_chi_age = cct9991a ,
181
+ mfq_21_chi_age = YPA9020 ,
182
+ mfq_22_chi_age = YPB9992 ,
183
+ mfq_23_chi_age = YPC2650 )
184
+
169
185
170
186
# # ---- CIS-R ------------------------------------------------------------------
171
187
172
188
# Participants coded as meeting criteria for an anxiety disorder if they
173
- # meet criteria for either (i) Generalised anxiety disorder, (ii) Panic disorder,
174
- # (iii) Agoraphobia, or (iv) Social phobia.
189
+ # meet criteria for either (i) Generalised anxiety disorder,
190
+ # (ii) Panic disorder, ( iii) Agoraphobia, or (iv) Social phobia.
175
191
176
192
chi_mh.data <- chi_mh.data %> %
177
193
mutate(
@@ -191,10 +207,13 @@ mutate(
191
207
chi_mh.data <- chi_mh.data %> %
192
208
select(aln , qlet , sqd_int_3_mat , sdq_int_6_mat , sdq_int_8_mat , sdq_int_9_mat ,
193
209
sdq_int_11_mat , sdq_int_13_mat , sdq_int_16_mat , sdq_int_8_sch ,
194
- sdq_int_11_sch , sqd_ext_3_mat , sqd_ext_6_mat , sqd_ext_8_mat , sqd_ext_9_mat ,
195
- sqd_ext_11_mat , sqd_ext_13_mat , sqd_ext_16_mat , sqd_ext_8_sch ,
196
- sqd_ext_11_sch , mfq_10_chi , mfq_12_chi , mfq_13_chi , mfq_16_chi , mfq_17_chi ,
197
- mfq_21_chi , mfq_22_chi , mfq_23_chi , mfq_9_mat , mfq_11_mat , mfq_13_mat ,
198
- mfq_16_mat , cisr_anx_18 , cisr_selfharm_18 , cisr_dep_18 )
210
+ sdq_int_11_sch , sqd_ext_3_mat , sqd_ext_6_mat , sqd_ext_8_mat ,
211
+ sqd_ext_9_mat , sqd_ext_11_mat , sqd_ext_13_mat , sqd_ext_16_mat ,
212
+ sqd_ext_8_sch , sqd_ext_11_sch , mfq_10_chi , mfq_12_chi , mfq_13_chi ,
213
+ mfq_16_chi , mfq_17_chi , mfq_18_chi , mfq_21_chi , mfq_22_chi , mfq_23_chi ,
214
+ mfq_9_mat , mfq_11_mat , mfq_13_mat , mfq_16_mat , cisr_anx_18 ,
215
+ cisr_selfharm_18 , cisr_dep_18 , mfq_10_chi_age , mfq_12_chi_age ,
216
+ mfq_13_chi_age , mfq_16_chi_age , mfq_17_chi_age , mfq_18_chi_age ,
217
+ mfq_21_chi_age , mfq_22_chi_age , mfq_23_chi_age )
199
218
200
219
save(chi_mh.data , file = " z:/projects/ieu2/p6/021/working/data/chi_mh.RData" )
0 commit comments