-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathTask_4.py
125 lines (104 loc) · 3.08 KB
/
Task_4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
(0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)
)
]
)
trainset = torchvision.datasets.CIFAR10(
root='./data',
train=True,
download=False,
transform=transform
)
testset = torchvision.datasets.CIFAR10(
root='./data',
train=False,
download=False,
transform=transform
)
trainloader = torch.utils.data.DataLoader(
trainset,
batch_size=4,
shuffle=True,
num_workers=2
)
testloader = torch.utils.data.DataLoader(
testset,
batch_size=4,
shuffle=False,
num_workers=2
)
classes = (
'plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck'
)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(
net.parameters(),
lr=0.01
)
for epoch in range(20):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# data = (inputs, labels)
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
running_loss = running_loss + loss.item()
if i % 2000 == 1999:
print(
'[%d, %5d] loss: %.3f' %
(epoch + 1, i+1, running_loss/2000)
)
running_loss = 0.0
print("vola")
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
dumb, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('accuracy: %f' % (correct / total))
### ======================== ###
# epoch = 2, batch_size = 4, lr = 0.001 : loss = 1.814, accuracy = 35.5%
# epoch = 5, batch_size = 4, lr = 0.001 : loss = 1.469, accuracy = 46.3%
# epoch = 2, batch_size = 10, lr = 0.001 : loss = 2.275, accuracy = 19.8%
# epoch = 20, batch_size = 4, lr = 0.01 : loss = 0.721, accuracy = 60.8%
### ======================== ###
# Epochs = 2; Batch_size = 4; lr = 0.01; output_channel=24; kernel_size=5; Accuracy = 63
# Epochs = 2; Batch_size = 4; lr = 0.01; output_channel=32; kernel_size=5; Accuracy = 59
# Epochs = 2; Batch_size = 4; lr = 0.01; output_channel=256; kernel_size=3; Accuracy = 59
### ======================== ###