-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathTask4.py
173 lines (154 loc) · 3.89 KB
/
Task4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
(0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)
)
]
)
trainset = torchvision.datasets.CIFAR10(
root='~/data',
train=True,
download=False,
transform=transform
)
testset = torchvision.datasets.CIFAR10(
root='~/data',
train=False,
download=False,
transform=transform
)
trainloader = torch.utils.data.DataLoader(
trainset,
batch_size=4,
shuffle=True,
num_workers=2
)
testloader = torch.utils.data.DataLoader(
testset,
batch_size=4,
shuffle=False,
num_workers=2
)
classes = (
'plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck'
)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(
net.parameters(),
lr=0.001
)
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# data = (inputs, labels)
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
running_loss = running_loss + loss.item()
if i % 2000 == 1999:
print(
'[%d, %5d] loss: %.3f' %
(epoch + 1, i+1, running_loss/2000)
)
running_loss = 0.0
print("vola")
# 1) Just the normal code
# [1, 2000] loss: 2.303
# [1, 4000] loss: 2.303
# [1, 6000] loss: 2.301
# [1, 8000] loss: 2.299
# [1, 10000] loss: 2.296
# [1, 12000] loss: 2.289
# [2, 2000] loss: 2.257
# [2, 4000] loss: 2.209
# [2, 6000] loss: 2.161
# [2, 8000] loss: 2.085
# [2, 10000] loss: 1.978
# [2, 12000] loss: 1.925
# 82.325 seconds taken
# 2) Adding a sigmoid function at output
# [1, 2000] loss: 2.303
# [1, 4000] loss: 2.302
# [1, 6000] loss: 2.302
# [1, 8000] loss: 2.302
# [1, 10000] loss: 2.301
# [1, 12000] loss: 2.301
# [2, 2000] loss: 2.300
# [2, 4000] loss: 2.300
# [2, 6000] loss: 2.298
# [2, 8000] loss: 2.296
# [2, 10000] loss: 2.292
# [2, 12000] loss: 2.287
# 81.954 seconds taken
# 3) Case 2 with increasing learning rate to 0.01
# [1, 2000] loss: 2.243
# [1, 4000] loss: 2.140
# [1, 6000] loss: 2.084
# [1, 8000] loss: 2.056
# [1, 10000] loss: 2.041
# [1, 12000] loss: 2.021
# [2, 2000] loss: 1.995
# [2, 4000] loss: 1.990
# [2, 6000] loss: 1.969
# [2, 8000] loss: 1.954
# [2, 10000] loss: 1.946
# [2, 12000] loss: 1.937
# 84.034 seconds taken
# 4) Case 1 with learning rate 0.01
# [1, 2000] loss: 1.254
# [1, 4000] loss: 1.220
# [1, 6000] loss: 1.212
# [1, 8000] loss: 1.203
# [1, 10000] loss: 1.212
# [1, 12000] loss: 1.193
# [2, 2000] loss: 1.120
# [2, 4000] loss: 1.120
# [2, 6000] loss: 1.132
# [2, 8000] loss: 1.126
# [2, 10000] loss: 1.129
# [2, 12000] loss: 1.101
# 80.073 seconds taken
# 5) output softmax with lr = 0.01
# [1, 2000] loss: 2.303
# [1, 4000] loss: 2.302
# [1, 6000] loss: 2.302
# [1, 8000] loss: 2.302
# [1, 10000] loss: 2.301
# [1, 12000] loss: 2.293
# [2, 2000] loss: 2.274
# [2, 4000] loss: 2.261
# [2, 6000] loss: 2.239
# [2, 8000] loss: 2.208
# [2, 10000] loss: 2.179
# [2, 12000] loss: 2.151
# 81.663 seconds taken