diff --git a/Tasks/day2.py b/Tasks/day2.py new file mode 100644 index 0000000..9241633 --- /dev/null +++ b/Tasks/day2.py @@ -0,0 +1,10 @@ +import numpy as np +import torch + +a=np.random.rand(5,3) +b=np.random.rand(3,4) +a2=torch.from_numpy(a) +b2=torch.from_numpy(b) + +c=torch.mm(a2,b2) +print(c) diff --git a/Tasks/registration_task/.pytest_cache/v/cache/lastfailed b/Tasks/registration_task/.pytest_cache/v/cache/lastfailed new file mode 100644 index 0000000..9e26dfe --- /dev/null +++ b/Tasks/registration_task/.pytest_cache/v/cache/lastfailed @@ -0,0 +1 @@ +{} \ No newline at end of file diff --git a/Tasks/registration_task/.pytest_cache/v/cache/nodeids b/Tasks/registration_task/.pytest_cache/v/cache/nodeids new file mode 100644 index 0000000..2984d50 --- /dev/null +++ b/Tasks/registration_task/.pytest_cache/v/cache/nodeids @@ -0,0 +1,4 @@ +[ + "test.py::test_code[ip0-12]", + "test.py::test_code[ip1-13]" +] \ No newline at end of file diff --git a/Tasks/registration_task/__pycache__/main.cpython-36.pyc b/Tasks/registration_task/__pycache__/main.cpython-36.pyc new file mode 100644 index 0000000..cf6e2b1 Binary files /dev/null and b/Tasks/registration_task/__pycache__/main.cpython-36.pyc differ diff --git a/Tasks/registration_task/__pycache__/test.cpython-36-PYTEST.pyc b/Tasks/registration_task/__pycache__/test.cpython-36-PYTEST.pyc new file mode 100644 index 0000000..3952102 Binary files /dev/null and b/Tasks/registration_task/__pycache__/test.cpython-36-PYTEST.pyc differ diff --git a/Tasks/registration_task/main.py b/Tasks/registration_task/main.py index b79be69..2fbd3f7 100644 --- a/Tasks/registration_task/main.py +++ b/Tasks/registration_task/main.py @@ -5,17 +5,40 @@ y = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] """ -import numpy +import numpy as np class LinearRegression(object): - """ - An implementation of linear regression model - """ - - def fit(_input, _output): - pass - - def predict(_input): - pass - - + def __init__(self, mx=None, my=None, b_0=None, b_1=None): + self.mx=mx + self.my=my + self.b_0=b_0 + self.b_1=b_1 + def fit(self,_input, _output): + n=np.size(_output) + self.mx=np.mean(_input) + self.my=np.mean(_output) + sum1,sum2=0,0 + for i in range(n): + sum1+=_input[i][0]*_output[i] + sum2+=_input[i][0]*_input[i][0] + SS_xy =sum1-n*self.my*self.mx + SS_xx =sum2-n*self.mx*self.mx + self.b_1 = SS_xy / SS_xx + self.b_0 = self.my - self.b_1*self.mx + print(self.b_0) + print(self.b_1) + print(self.my) + print(self.mx) + print(SS_xx) + print(SS_xy) + print(sum1) + print(sum2) + + + def predict(self,_input): + n=np.size(_input) + _output=[] + for i in range(n): + a=self.b_0+(self.b_1*_input[i][0]) + _output.append(a) + return _output