-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTEDIEmanual_tiffedit.html
124 lines (101 loc) · 4.82 KB
/
TEDIEmanual_tiffedit.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
<!DOCTYPE html>
<html>
<head>
<title></title>
</head>
<body>
</body>
</html>
<!-- this is for the title -->
<head>
<meta charset = 'utf-8'>
<title>TEDIE Manual </title>
</head>
<style>
body {background-color: white}
h2 {color: #3498D8;}
.tsection
{
border: thin #336699 solid;
background-color: white;
padding: 20px;
margin: 20px;
text-align: left;
font-size: 14pt;
}
</style>
<body>
<!-- this is for the content part of the TEDIE manual -->
<h1> TEDIE MANUAL </h1>
<nav>
<ul>
<li><a href = "#TEDIE_matlab">Use TEDIE in MATLAB</a></li>
<li><a href = "#load_data">Load Data for TEDIE</a></li>
<li><a href = "#disc_choice">Choose Discretization Method for TEDIE</a></li>
<li><a href="#result">TEDIE Result in Commend Window</a></li>
<li><a href="#code">TEDIE Source Code</a></li>
</ul>
</nav>
<!-- this is for the body part of the TEDIE manual -->
<h2 id = TEDIE_matlab>Use TEDIE in MATLAB</h2>
<div class = "tsection">
This document explains how two-step discretization evaluation (TEDIE) works with an example data file. <br>
TEDIE is developed under MATLAB2016b. It is also compatible with MATLAB2017a. <br>
<p>We run TEDIE using the <a href = main_example.m> main </a>script. </p>
<img src="ManualImage/MainScript.png" alt = "Main Script Screenshot" style = "width:80%"><br>
</div>
<h2 id = "load_data">Load Data for TEDIE</h2>
<div class = "tsection">
<b>Background:</b>
<br>
<p>We include an example (also the default) data file, example.mat, dealing with data from an in silico network with 13 nodes.
The .mat file has info for 24 matrices: the original data, and 23 different discretizations of it
(bikmeans2-5, i2-5, kmeans2-5, max25, max50, max75, mean, q2-5, TDT, top25, top75).
Each matrix contains 8 time series on the 13 node network, each with 9 time points, resulting in a 104 by 9 matrix.
If you are using your own data, please make sure that for each of the 8 time series, each variable (node) is in its own row.
The columns correspond to the time points.
<br>
To run the main_example.m script on MATLAB: open the file in the editor, and click “Run”.
Alternatively, enter the following command in the Command Window: main_example
<br>
When a dialog window will pop up, you can choose your own data (*.mat) file.
Closing the window or hitting “Cancel” will load the default example data into MATLAB workspace.
<br>
<img src="ManualImage/DataSetChoose.png" alt = "Choose Data Window" style = "width: 100%">
<br>
In command window, it will indicate whether user data is loaded successfully, <br>
<img src="ManualImage/UDload.png" alt = "load user data" style = "width:80%">
<br>
or default data is loaded.
<br>
<img src = "ManualImage/DDload.png" alt = "load default data" style = "width:80%">
</p>
</div>
<h2 id = "disc_choice">Choose Discretization Method for TEDIE</h2>
<div class = "tsection">
<p>Next, select the discretization of interest in the new dialog, and click “close”. <br>
<img src="ManualImage/DiscretizationChoose.png" alt = "Choose Discretization Window" style = "width: 100%"><br>
</p>
</div>
<h2 id = "result">TEDIE Result in Command Window</h2>
<div class = "tsection">
<p>
Then the command line will show the discretization of choice, and whether it passes qualification step; if passed, then the mean area between the curves would show up in the commend window. <br>
<img src="ManualImage/s1s2.png" alt = "result that passes qualification and calculate MABC" style = "width: 100%"><br>
Otherwise, it will tell you to choose another discretization method.
<img src="ManualImage/s1.png" alt = "result that fails to pass qualification" style = "width: 100%"><br>
</p>
</div>
<h2 id = "code">TEDIE Source Code</h2>
<div class = "tsection">
Our source code is available on <a href = "https://github.com/yuezhelee/DiscretizationAlgorithms">GitHub</a>
<ul>
<li><a href = "https://github.com/yuezhelee/DiscretizationAlgorithms/blob/master/main_example.m"> the file that should run when using TEDIE </a></li>
<li><a href = "https://github.com/yuezhelee/DiscretizationAlgorithms/blob/master/prebenchmark.m"> calculate area between two lines </a></li>
<li><a href = "https://github.com/yuezhelee/DiscretizationAlgorithms/blob/master/benchmark.m"> the TEDIE main function, including both qualification and mean area between the curves </a></li>
<li><a href = "https://github.com/yuezhelee/DiscretizationAlgorithms/blob/master/choosedialog.m"> discretizaztion choosing window </a></li>
<li><a href = "https://github.com/yuezhelee/DiscretizationAlgorithms/blob/master/GetDiscretizationMethods.m"> function file for discretization selection window </a></li>
<li><a href = "https://github.com/yuezhelee/DiscretizationAlgorithms/blob/master/example.mat" target = '_blank'> example data file </a></li>
</ul>
</div>
</html>