-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoctave_main_example.m
110 lines (96 loc) · 3.61 KB
/
octave_main_example.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
% @author Tiffany Jann
% @date August 17, 2017
% @adapted from main_example.m
% @contact [email protected]
%%% THIS SCRIPT IS ADAPTED FROM MAIN_EXAMPLE TO BE COMPATIBLE WITH OCTAVE
clc,clear
format short
%%%%% LOAD DATA %%%%%
% for input file, either use user's own file, or load default example file;
try
prompt = 'Please enter the path of your own *.mat file (hit ENTER for default): ';
path = input(prompt, 's');
if path
load(path)
fprintf('Data file successfully loaded from ')
disp(path)
else
load('example.mat');
disp('No file selected. Default file loaded.')
end
catch % if user's selected file causes an error
% load an example data file; keep all the files in the same folder;
load('example.mat');
disp('An error occured. Default file loaded.')
end
clear prompt path;
%%%%% SELECT DISCRETIZATION %%%%%
% asks user to select from available discretization methods in loaded data
vn = GetDiscretizationMethods(who());
disp('Available discretizations:');
disp(cellstr(transpose(vn)));
DiscMethodChoice = input('Please enter your desired discretization: ', 's');
disp('Discretizaition of Choice: ');
try
fprintf(['\t',DiscMethodChoice, '\n']);
test_data = eval(DiscMethodChoice);
catch
% if doesn't enter a valid discretization method
disp(strcat('[', DiscMethodChoice, '] ', ' is not available. Selecting first discretization (', vn{1}, ').'));
test_data = eval(vn{1});
disp(vn{1}); % method will be printed, without the tab, distinguishing from deliberate selection
end
clear vn DiscMethodChoice;
% prompt for data dimensions
% default values correspond to default example data
num_time_series = input('Please enter the number of time series per matrix: ', 's');
while isnan(str2double(num_time_series)) || str2double(num_time_series) < 1
disp(' Error: Invalid number of time series.');
num_time_series = input(' Please enter a valid number of time series: ', 's');
end
num_time_series = str2double(num_time_series);
num_nodes = input('Please enter the number of nodes in the network: ', 's');
while isnan(str2double(num_nodes)) || str2double(num_nodes) < 1
disp(' Error: Invalid number of nodes.');
num_nodes = input(' Please enter a valid number of nodes: ', 's');
end
num_nodes = str2double(num_nodes);
%%%%% DATA NORMALIZATION %%%%%
nouveau = ( test_data - ones(size(test_data)) * min(min(test_data)) ) / (max(max(test_data)) - min(min(test_data)));
clear test_data;
test_data = nouveau;
clear nouveau;
%%%%% COMPUTATIONS %%%%%
%%% qualification %%%
len = length(original);
rocile = zeros(len,1); % preallocating space to save computation resources
try
for i = 1:len
res = original(i,:) - test_data(i,:);
rocile(i,1) = signtest(sort(res));
clear res;
end
catch e
disp('An error occured. Likely, your .mat file is missing the original dataset matrix. Error message: ');
disp(e.message);
end
zygote(1) = quantile(rocile, 0.25);
clear i rocile len;
if zygote < 0.01
disp('stop here! qualification failed. choose another discretization method!');
else
disp('qualification passed! move onto evaluation')
%%% evaluation %%%
roche = zeros(num_time_series,1); % preallocating space to save computation resources
for i = 1:num_time_series
startt = (i-1)*num_nodes+1;
endd = i*num_nodes;
roche(i,1) = benchmark(original(startt:endd,:)', test_data(startt:endd,:)' );
clear startt endd;
end
zygote(2) = sum(roche)/num_time_series;
clear i roche;
disp('mean area between the curve: ')
disp(zygote(2))
end
clear test_data zygote num_time_series num_nodes;