-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprediction.py
55 lines (48 loc) · 2.01 KB
/
prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np
import torch
from common import get_data_transformation
from datasets import herbarium_fertility, herbarium_phenophase
from helpers import predict
from utils import print_cuda_info, get_default_data_loaders
def predict_command(args):
print_cuda_info()
# Preprocessing and data data augmentation
train_transform, test_transform = \
get_data_transformation(args.keep_image_ratio, args.downsample_image)
# Load dataset
if args.task == 'phenophase':
dataset = herbarium_phenophase
(train_data_loader, test_data_loader), (n_samples_train, n_samples_test) =\
get_default_data_loaders(
dataset,
batch_size=args.batch_size,
train_transform=train_transform,
test_transform=test_transform,
test=True,
num_workers=args.num_workers,
root=args.dataset_root,
subset=args.subset
)
else:
dataset = herbarium_fertility
(train_data_loader, test_data_loader), (n_samples_train, n_samples_test) =\
get_default_data_loaders(
dataset,
batch_size=args.batch_size,
train_transform=train_transform,
test_transform=test_transform,
test=True,
num_workers=args.num_workers,
root=args.dataset_root,
task=args.task,
subset=args.subset
)
print('Train dataset: {}'.format(train_data_loader.dataset))
print('Train sampler: {}'.format(train_data_loader.sampler.__class__.__name__))
print('Train set size: {}'.format(n_samples_train))
print('Test dataset: {}'.format(test_data_loader.dataset))
print('Test sampler: {}'.format(test_data_loader.sampler.__class__.__name__))
print('Test set size: {}'.format(n_samples_test))
model = torch.load(args.model_file)
preds = predict(model, test_data_loader, gpu=True)
np.save(args.output_predictions_file, preds)