-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtraining.py
151 lines (127 loc) · 5.15 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import sys
from os.path import join
import numpy as np
import torch
from torch import nn, optim
from torchvision import models
from common import get_data_transformation
from datasets import herbarium_fertility, herbarium_phenophase
from helpers import binary_accuracy, multiclass_accuracy, train
from utils import print_cuda_info, get_default_data_loaders
def train_command(args):
if not os.path.exists(args.experiment_output_path):
os.makedirs(args.experiment_output_path)
# Define a logger
class Logger(object):
def __init__(self, log_path):
self.terminal = sys.stdout
self.log = open(join(log_path, 'train.log'), 'w')
def write(self, message):
self.terminal.write(message)
self.log.write(message)
self.terminal.flush()
self.log.flush()
def flush(self):
# Needed for python 3 compatibility.
pass
sys.stdout = Logger(args.experiment_output_path)
print(' '.join(sys.argv), '\n')
print_cuda_info()
# Preprocessing and data data augmentation
train_transform, test_transform = \
get_data_transformation(args.keep_image_ratio, args.downsample_image)
# Load dataset
print('\n# Loading dataset')
if args.task == 'phenophase':
dataset = herbarium_phenophase
(train_data_loader, test_data_loader), (n_samples_train, n_samples_test) =\
get_default_data_loaders(
dataset,
batch_size=args.batch_size,
train_transform=train_transform,
test_transform=test_transform,
test=False,
num_workers=args.num_workers,
root=args.dataset_root,
subset=args.subset
)
else:
dataset = herbarium_fertility
(train_data_loader, test_data_loader), (n_samples_train, n_samples_test) =\
get_default_data_loaders(
dataset,
batch_size=args.batch_size,
train_transform=train_transform,
test_transform=test_transform,
test=False,
num_workers=args.num_workers,
root=args.dataset_root,
task=args.task,
subset=args.subset
)
print('Train dataset: {}'.format(train_data_loader.dataset))
print('Train sampler: {}'.format(train_data_loader.sampler.__class__.__name__))
print('Train set size: {}'.format(n_samples_train))
print('Test dataset: {}'.format(test_data_loader.dataset))
print('Test sampler: {}'.format(test_data_loader.sampler.__class__.__name__))
print('Test set size: {}'.format(n_samples_test))
# Load pretrained model
print('\n# Loading model')
model = getattr(models, args.model)(pretrained=True)
if args.model == 'inception_v3':
raise ValueError(
'InceptionV3 not supported due to too many differences with other '
'models (i.e. input size of 299x299, auxiliary classifiers, etc.)')
# Adapt last average pooling layer to different image sizes
if args.keep_image_ratio:
if args.downsample_image:
model.avgpool = nn.AvgPool2d(kernel_size=(13, 8), stride=1)
else:
model.avgpool = nn.AvgPool2d(kernel_size=(27, 18), stride=1)
n_classes = train_data_loader.dataset.n_classes
n_outputs = n_classes
model.fc = nn.Linear(model.fc.in_features, n_outputs)
clf = model.fc
nn.init.kaiming_normal_(clf.weight)
nn.init.constant_(clf.bias, val=0)
print(model)
if args.task == 'phenophase':
criterion = nn.CrossEntropyLoss()
metric = multiclass_accuracy
else:
criterion = nn.BCEWithLogitsLoss()
metric = binary_accuracy
print(criterion)
params = model.parameters()
print('\n# Finetuning whole network...')
optimizer = optim.SGD(params, lr=args.lr,
momentum=.9, nesterov=True)
print(optimizer)
if args.lr_decay:
from torch.optim.lr_scheduler import MultiStepLR
milestones = np.asarray(eval(args.lr_decay))
if issubclass(milestones.dtype.type, np.floating):
milestones = (args.num_epochs * milestones).astype(np.int)
lr_scheduler = MultiStepLR(optimizer, milestones=milestones, gamma=0.1)
print '{}(milestones={}, gamma={})'.format(
lr_scheduler.__class__.__name__, lr_scheduler.milestones,
lr_scheduler.gamma
)
else:
lr_scheduler = None
history = train(
model, optimizer, criterion, train_data_loader,
n_epochs=args.num_epochs, lr_scheduler=lr_scheduler,
metrics=[metric], val_data_loader=test_data_loader, gpu=True
)
with open(join(args.experiment_output_path, 'config.txt'), 'w') as f:
f.write(repr(train_data_loader.dataset) + '\n')
f.write(repr(model) + '\n')
f.write(repr(criterion) + '\n')
f.write(repr(optimizer) + '\n')
import pandas as pd
df = pd.DataFrame(history)
df.to_csv(join(args.experiment_output_path, 'training.csv'),
index_label='epoch')
torch.save(model, join(args.experiment_output_path, 'model.pkl'))