|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": { |
| 7 | + "collapsed": true |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "import tensorflow as tf" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": 2, |
| 17 | + "metadata": {}, |
| 18 | + "outputs": [ |
| 19 | + { |
| 20 | + "data": { |
| 21 | + "text/plain": [ |
| 22 | + "'1.3.0'" |
| 23 | + ] |
| 24 | + }, |
| 25 | + "execution_count": 2, |
| 26 | + "metadata": {}, |
| 27 | + "output_type": "execute_result" |
| 28 | + } |
| 29 | + ], |
| 30 | + "source": [ |
| 31 | + "tf.__version__" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "code", |
| 36 | + "execution_count": 3, |
| 37 | + "metadata": {}, |
| 38 | + "outputs": [ |
| 39 | + { |
| 40 | + "name": "stdout", |
| 41 | + "output_type": "stream", |
| 42 | + "text": [ |
| 43 | + "Author: Tommy Mulc\n" |
| 44 | + ] |
| 45 | + } |
| 46 | + ], |
| 47 | + "source": [ |
| 48 | + "print \"Author: Tommy Mulc\"" |
| 49 | + ] |
| 50 | + }, |
| 51 | + { |
| 52 | + "cell_type": "markdown", |
| 53 | + "metadata": {}, |
| 54 | + "source": [ |
| 55 | + "Create a TensorFlow cluster with one worker node and one ps node." |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "code", |
| 60 | + "execution_count": 4, |
| 61 | + "metadata": { |
| 62 | + "collapsed": true |
| 63 | + }, |
| 64 | + "outputs": [], |
| 65 | + "source": [ |
| 66 | + "task_index=0" |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "code", |
| 71 | + "execution_count": 5, |
| 72 | + "metadata": { |
| 73 | + "collapsed": true |
| 74 | + }, |
| 75 | + "outputs": [], |
| 76 | + "source": [ |
| 77 | + "cluster_spec = tf.train.ClusterSpec({'ps' : ['localhost:2222'],'worker' : ['localhost:2223','localhost:2224']})\n", |
| 78 | + "server = tf.train.Server(cluster_spec,job_name='worker',task_index=task_index)" |
| 79 | + ] |
| 80 | + }, |
| 81 | + { |
| 82 | + "cell_type": "markdown", |
| 83 | + "metadata": {}, |
| 84 | + "source": [ |
| 85 | + "**Now launch run all the cells in the parameter server notebook**" |
| 86 | + ] |
| 87 | + }, |
| 88 | + { |
| 89 | + "cell_type": "markdown", |
| 90 | + "metadata": {}, |
| 91 | + "source": [ |
| 92 | + "Create variables locally then makes global copy. One worker scenario" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "code", |
| 97 | + "execution_count": 6, |
| 98 | + "metadata": { |
| 99 | + "collapsed": true |
| 100 | + }, |
| 101 | + "outputs": [], |
| 102 | + "source": [ |
| 103 | + "tf.reset_default_graph()" |
| 104 | + ] |
| 105 | + }, |
| 106 | + { |
| 107 | + "cell_type": "code", |
| 108 | + "execution_count": 7, |
| 109 | + "metadata": {}, |
| 110 | + "outputs": [], |
| 111 | + "source": [ |
| 112 | + "#create local graph like normal specifying the local device\n", |
| 113 | + "with tf.device('/job:worker/task:0'):\n", |
| 114 | + " a = tf.Variable([0.],name='a',collections=[tf.GraphKeys.LOCAL_VARIABLES])\n", |
| 115 | + " b = tf.constant([100.])\n", |
| 116 | + " loss = tf.abs(a-b)\n", |
| 117 | + " \n", |
| 118 | + " optimizer = tf.train.GradientDescentOptimizer(.1)\n", |
| 119 | + " grads,local_vars = zip(*optimizer.compute_gradients(loss,var_list=tf.local_variables()))\n", |
| 120 | + " local_update = optimizer.apply_gradients(zip(grads,local_vars))\n", |
| 121 | + " \n", |
| 122 | + " \n", |
| 123 | + " init_local = tf.local_variables_initializer()\n", |
| 124 | + "\n", |
| 125 | + "#create the globabl copies on the ps\n", |
| 126 | + "with tf.device('/job:ps/task:0'):\n", |
| 127 | + " for v in tf.local_variables():\n", |
| 128 | + " v_g = tf.get_variable('g/'+v.op.name,\n", |
| 129 | + " shape = v.shape,\n", |
| 130 | + " dtype = v.dtype,\n", |
| 131 | + " trainable=True,\n", |
| 132 | + " collections=[tf.GraphKeys.GLOBAL_VARIABLES,tf.GraphKeys.TRAINABLE_VARIABLES])\n", |
| 133 | + "\n", |
| 134 | + "\n", |
| 135 | + "#gloabl updates\n", |
| 136 | + "with tf.device('/job:worker/task:%d'%task_index):\n", |
| 137 | + " #this needs to be updated. Clearly not robust for any graph more complext\n", |
| 138 | + " global_vars = tf.global_variables()\n", |
| 139 | + " global_update = optimizer.apply_gradients(zip(grads,global_vars))\n", |
| 140 | + "\n", |
| 141 | + "#create init op on the chief node\n", |
| 142 | + "with tf.device('/job:worker/task:%d'%task_index):\n", |
| 143 | + " init_global = tf.global_variables_initializer()" |
| 144 | + ] |
| 145 | + }, |
| 146 | + { |
| 147 | + "cell_type": "code", |
| 148 | + "execution_count": 8, |
| 149 | + "metadata": { |
| 150 | + "collapsed": true |
| 151 | + }, |
| 152 | + "outputs": [], |
| 153 | + "source": [ |
| 154 | + "a_global = tf.global_variables()[0]" |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | + "cell_type": "code", |
| 159 | + "execution_count": 9, |
| 160 | + "metadata": {}, |
| 161 | + "outputs": [ |
| 162 | + { |
| 163 | + "name": "stdout", |
| 164 | + "output_type": "stream", |
| 165 | + "text": [ |
| 166 | + "/job:worker/task:0\n", |
| 167 | + "/job:worker/task:0\n", |
| 168 | + "/job:worker/task:0\n", |
| 169 | + "/job:worker/task:0\n", |
| 170 | + "/job:ps/task:0\n", |
| 171 | + "/job:ps/task:0\n", |
| 172 | + "/job:worker/task:0\n", |
| 173 | + "/job:ps/task:0\n" |
| 174 | + ] |
| 175 | + } |
| 176 | + ], |
| 177 | + "source": [ |
| 178 | + "print(a.device)\n", |
| 179 | + "print(b.device)\n", |
| 180 | + "print(loss.device)\n", |
| 181 | + "#print(optimizer.device)\n", |
| 182 | + "print(local_update.device)\n", |
| 183 | + "print(global_update.device)\n", |
| 184 | + "print(init_global.device)\n", |
| 185 | + "print(init_local.device)\n", |
| 186 | + "print(a_global.device)" |
| 187 | + ] |
| 188 | + }, |
| 189 | + { |
| 190 | + "cell_type": "code", |
| 191 | + "execution_count": 10, |
| 192 | + "metadata": {}, |
| 193 | + "outputs": [ |
| 194 | + { |
| 195 | + "data": { |
| 196 | + "text/plain": [ |
| 197 | + "[None, None]" |
| 198 | + ] |
| 199 | + }, |
| 200 | + "execution_count": 10, |
| 201 | + "metadata": {}, |
| 202 | + "output_type": "execute_result" |
| 203 | + } |
| 204 | + ], |
| 205 | + "source": [ |
| 206 | + "sess = tf.Session(target=server.target)\n", |
| 207 | + "sess.run([init_local,init_global])" |
| 208 | + ] |
| 209 | + }, |
| 210 | + { |
| 211 | + "cell_type": "code", |
| 212 | + "execution_count": 11, |
| 213 | + "metadata": {}, |
| 214 | + "outputs": [ |
| 215 | + { |
| 216 | + "data": { |
| 217 | + "text/plain": [ |
| 218 | + "[array([ 0.], dtype=float32), array([ 0.55522525], dtype=float32)]" |
| 219 | + ] |
| 220 | + }, |
| 221 | + "execution_count": 11, |
| 222 | + "metadata": {}, |
| 223 | + "output_type": "execute_result" |
| 224 | + } |
| 225 | + ], |
| 226 | + "source": [ |
| 227 | + "sess.run([a,a_global])" |
| 228 | + ] |
| 229 | + }, |
| 230 | + { |
| 231 | + "cell_type": "code", |
| 232 | + "execution_count": 12, |
| 233 | + "metadata": { |
| 234 | + "collapsed": true |
| 235 | + }, |
| 236 | + "outputs": [], |
| 237 | + "source": [ |
| 238 | + "sess.run(local_update)" |
| 239 | + ] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "code", |
| 243 | + "execution_count": 14, |
| 244 | + "metadata": {}, |
| 245 | + "outputs": [ |
| 246 | + { |
| 247 | + "data": { |
| 248 | + "text/plain": [ |
| 249 | + "[array([ 0.1], dtype=float32), array([ 0.55522525], dtype=float32)]" |
| 250 | + ] |
| 251 | + }, |
| 252 | + "execution_count": 14, |
| 253 | + "metadata": {}, |
| 254 | + "output_type": "execute_result" |
| 255 | + } |
| 256 | + ], |
| 257 | + "source": [ |
| 258 | + "sess.run([a,a_global])" |
| 259 | + ] |
| 260 | + }, |
| 261 | + { |
| 262 | + "cell_type": "code", |
| 263 | + "execution_count": 15, |
| 264 | + "metadata": { |
| 265 | + "collapsed": true |
| 266 | + }, |
| 267 | + "outputs": [], |
| 268 | + "source": [ |
| 269 | + "sess.run(global_update)" |
| 270 | + ] |
| 271 | + }, |
| 272 | + { |
| 273 | + "cell_type": "code", |
| 274 | + "execution_count": 17, |
| 275 | + "metadata": {}, |
| 276 | + "outputs": [ |
| 277 | + { |
| 278 | + "data": { |
| 279 | + "text/plain": [ |
| 280 | + "[array([ 0.1], dtype=float32), array([ 0.7552253], dtype=float32)]" |
| 281 | + ] |
| 282 | + }, |
| 283 | + "execution_count": 17, |
| 284 | + "metadata": {}, |
| 285 | + "output_type": "execute_result" |
| 286 | + } |
| 287 | + ], |
| 288 | + "source": [ |
| 289 | + "sess.run([a,a_global])" |
| 290 | + ] |
| 291 | + }, |
| 292 | + { |
| 293 | + "cell_type": "code", |
| 294 | + "execution_count": null, |
| 295 | + "metadata": { |
| 296 | + "collapsed": true |
| 297 | + }, |
| 298 | + "outputs": [], |
| 299 | + "source": [] |
| 300 | + } |
| 301 | + ], |
| 302 | + "metadata": { |
| 303 | + "kernelspec": { |
| 304 | + "display_name": "Python [conda env:tensorflow13]", |
| 305 | + "language": "python", |
| 306 | + "name": "conda-env-tensorflow13-py" |
| 307 | + }, |
| 308 | + "language_info": { |
| 309 | + "codemirror_mode": { |
| 310 | + "name": "ipython", |
| 311 | + "version": 2 |
| 312 | + }, |
| 313 | + "file_extension": ".py", |
| 314 | + "mimetype": "text/x-python", |
| 315 | + "name": "python", |
| 316 | + "nbconvert_exporter": "python", |
| 317 | + "pygments_lexer": "ipython2", |
| 318 | + "version": "2.7.13" |
| 319 | + } |
| 320 | + }, |
| 321 | + "nbformat": 4, |
| 322 | + "nbformat_minor": 2 |
| 323 | +} |
0 commit comments