You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
- This function tests the number against a fixed set of "witnesses".
42
-
- If the number fails the test for any witness, it's composite.
43
-
- If it passes for all witnesses, it's probably prime.
44
-
45
-
```rust
46
-
fnwitness(a:u64, n:u64) ->bool {
47
-
letmutt=n-1;
48
-
letmuts=0;
49
-
50
-
whilet%2==0 {
51
-
t/=2;
52
-
s+=1;
31
+
ifn.is_even() {
32
+
returnfalse;
53
33
}
54
34
55
-
letmutx=mod_pow(a, t, n);
56
-
ifx==1||x==n-1 {
35
+
letn_minus_one=n-1u32;
36
+
lets=n_minus_one.trailing_zeros().unwrap();
37
+
letd=&n_minus_one>>s;
38
+
39
+
letmutx=a.modpow(&d, n);
40
+
ifx==BigUint::one() ||x==n_minus_one {
57
41
returntrue;
58
42
}
59
43
60
-
for_in0..s-1 {
61
-
x=mod_mul(x, x, n);
62
-
ifx==n-1 {
44
+
for_in0..s-1 {
45
+
x=(&x*&x) %n;
46
+
ifx==n_minus_one {
63
47
returntrue;
64
48
}
65
49
}
50
+
66
51
false
67
52
}
68
53
```
69
-
- This function performs the actual Miller-Rabin test for a single witness.
70
-
- It first decomposes n-1 into (2^s) * t.
71
-
- Then it computes a^t mod n and checks for the conditions that indicate primality.
54
+
### Notes
55
+
Here's a step-by-step explanation of the function:
56
+
57
+
1. The function takes two `BigUint` parameters: `n` (the number to test for primality) and `a` (a random base used in the test).
58
+
2. First, it checks if `n` is 2, which is prime, so it returns `true`.
59
+
3. If `n` is even (and not 2), it's not prime, so it returns `false`.
60
+
4. It calculates `n_minus_one` as `n - 1`.
61
+
5. It finds `s` and `d` such that `n - 1 = 2^s * d`, where `d` is odd:
62
+
-`s` is the number of trailing zeros in the binary representation of `n_minus_one`.
63
+
-`d` is `n_minus_one` right-shifted by `s` bits.
64
+
6. It computes `x = a^d mod n` using the `modpow` function.
65
+
7. If `x` is 1 or `n - 1`, it returns `true` (probably prime).
66
+
8. It then enters a loop that runs `s - 1` times:
67
+
- In each iteration, it squares `x` modulo `n`.
68
+
- If `x` becomes `n - 1`, it returns `true` (probably prime).
69
+
9. If the loop completes without returning, it returns `false` (composite).
70
+
71
+
This test is not definitive but provides a strong probabilistic indication of primality. To increase certainty, the test is typically run multiple times with different random bases `a`.
This code implements the RSA (Rivest-Shamir-Adleman) cryptosystem, a widely used public-key cryptography algorithm. Here's a general outline of what the code does and how it works:
155
+
156
+
1. Import necessary libraries for big integer operations, random number generation, and parallel processing.
157
+
2. Define constants and helper functions:
158
+
-`SMALL_PRIMES`: A list of small prime numbers for initial primality checks.
159
+
-`generate_prime`: Generates a prime number of a specified bit length.
160
+
-`miller_rabin_test`: Implements the [[Miller-Rabin primality test]].
161
+
-`is_prime`: Checks if a number is prime using small prime divisions and Miller-Rabin tests.
162
+
-`mod_inverse`: Calculates the [[modular multiplicative inverse]].
163
+
3. Implement core RSA functions:
164
+
-`generate_keypair`: Generates RSA public and private keys.
165
+
-`encrypt`: Encrypts a message using the public key.
166
+
-`decrypt`: Decrypts a message using the private key.
167
+
4. In the `main` function:
168
+
- Generate a keypair (public and private keys).
169
+
- Create a sample message.
170
+
- Encrypt the message using the public key.
171
+
- Decrypt the encrypted message using the private key.
172
+
- Verify that the decrypted message matches the original.
173
+
174
+
The code uses parallel processing (via the `rayon` library) and optimized primality testing to improve performance. It also employs big integer arithmetic to handle the large numbers involved in RSA cryptography.
175
+
180
176
-[[Miller-Rabin primality test]] for numbers larger than 2^32
181
177
-[[Modular exponentiation]] to calculate (base^exp) % modulus
0 commit comments