-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrender_agents.py
68 lines (50 loc) · 2 KB
/
render_agents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python3
import gym
import ptan
import argparse
import torch as T
import time
from lib import dqn_model, common
from gym import wrappers
import numpy as np
from gym.envs.classic_control import rendering
PLAY_STEPS = 4
def repeat_upsample(rgb_array, k=1, l=1, err=[]):
# repeat kinda crashes if k/l are zero
if k <= 0 or l <= 0:
if not err:
print("Number of repeats must be larger than 0, k: {}, l: {}, returning default array!".format(k, l))
err.append('logged')
return rgb_array
# repeat the pixels k times along the y axis and l times along the x axis
# if the input image is of shape (m,n,3), the output image will be of shape (k*m, l*n, 3)
return np.repeat(np.repeat(rgb_array, k, axis=0), l, axis=1)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--agent", help="Path to agent model", required=True)
parser.add_argument('--env', help='Environment to load ("invaders", "assault", "demon-attack")', required=True)
args = parser.parse_args()
params = common.HYPERPARAMS[args.env]
env = gym.make(params['env_name'])
env_to_wrap = ptan.common.wrappers.wrap_dqn(env)
env = wrappers.Monitor(env_to_wrap, args.env + '_movie', force = True)
state = env.reset()
viewer = rendering.SimpleImageViewer()
expert = dqn_model.DQN(env.observation_space.shape, env.action_space.n)
expert.load_state_dict(T.load(args.agent, map_location='cpu').state_dict())
expert.eval()
num_steps = 5000
with T.no_grad():
for _ in range(num_steps):
state = T.Tensor(np.array(state))
Q_vals = expert(state.unsqueeze(0))
action = T.argmax(Q_vals)
next_state, reward, done, info = env.step(action)
rgb = env.render('rgb_array')
viewer.imshow(repeat_upsample(rgb, 3, 3))
state = next_state
time.sleep(0.015)
if done:
break
env.close()
env_to_wrap.close()