-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsingle_view_cnn.py
260 lines (226 loc) · 10.4 KB
/
single_view_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import argparse
import pandas as pd
import numpy as np
import cv2
import utility
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
parser = argparse.ArgumentParser()
parser.add_argument("--train_data")
parser.add_argument("--test_data")
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--epochs", type=int, default=3)
parser.add_argument("--train_sample_ratio", type=float, default=10)
parser.add_argument("--test_sample_ratio", type=float, default=10)
parser.add_argument("-a", "--architecture", default="vgg",
choices=['efficientnet', 'vgg', 'mobilenet', 'mobilenetv2', 'vggm'])
parser.add_argument("-o", "--out", default="./")
parser.add_argument("--load_model")
parser.add_argument("--lr")
args = parser.parse_args()
EPOCHS = args.epochs
BATCH_SIZE = args.batch_size
TIMESTAMP = utility.get_datastamp()
MODEL_DIR = os.path.join(args.out, f"{args.architecture}-{TIMESTAMP}")
print("[INFO] Processing training data..")
TRAIN_DATA_PATH = args.train_data
TRAIN_FILES = os.listdir(TRAIN_DATA_PATH)
for filename in TRAIN_FILES: # Removes file without .png extension
if not filename.endswith('png'):
TRAIN_FILES.remove(filename)
np.random.shuffle(TRAIN_FILES)
NUM_OBJECTS_TRAIN = len(TRAIN_FILES)
TRAIN_FILTER = args.train_sample_ratio
print("[INFO] Processing validation data..")
TEST_DATA_PATH = args.test_data
TEST_FILES = os.listdir(TEST_DATA_PATH)
for filename in TEST_FILES:
if not filename.endswith('png'):
TEST_FILES.remove(filename)
np.random.shuffle(TEST_FILES)
NUM_OBJECTS_TEST = len(TEST_FILES)
TEST_FILTER = args.test_sample_ratio
os.mkdir(MODEL_DIR)
METRICS = [
keras.metrics.CategoricalAccuracy(name='accuracy'),
# keras.metrics.BinaryAccuracy(name='binary_accuracy'),
# keras.metrics.Precision(name='precision'),
# keras.metrics.Recall(name='recall'),
# keras.metrics.AUC(name='auc')
]
# def scheduler(epoch, lr):
# if epoch <= 20:
# return 1e-3
# elif 20 < epoch <= 50:
# return 1e-4
# else:
# return 1e-5
CALLBACKS = [
tf.keras.callbacks.ModelCheckpoint(
filepath=os.path.join(MODEL_DIR, f'classification_model.h5'),
monitor='val_loss',
mode='min',
save_best_only=True,
save_freq='epoch'),
tf.keras.callbacks.TensorBoard(log_dir=os.path.join(MODEL_DIR, 'logs')),
tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss',
factor=0.5,
patience=3,
verbose=1,
mode='min',
min_lr=1e-8),
tf.keras.callbacks.EarlyStopping(patience=5),
# tf.keras.callbacks.LearningRateScheduler(scheduler)
]
def data_loader_train():
labels_dict = utility.get_label_dict()
for i in range(NUM_OBJECTS_TRAIN):
if i % TRAIN_FILTER == 0:
idx = np.random.randint(0, NUM_OBJECTS_TRAIN)
file_path = os.path.join(TRAIN_DATA_PATH, TRAIN_FILES[idx])
x = cv2.imread(file_path)
x = x / 255.0
# x = x[:, :, 0]
label_class = TRAIN_FILES[idx].split("_")[0]
if label_class == 'night':
label_class = 'night_stand' # Quick fix for label parsing
label_class = utility.int_to_1hot(labels_dict[label_class], 10)
label_view = utility.int_to_1hot(int(TRAIN_FILES[idx].split("_")[-1].split(".")[0]), 60)
yield np.resize(x, (224, 224, 3)), (label_class, label_view)
def data_loader_test():
labels_dict = utility.get_label_dict()
for i in range(NUM_OBJECTS_TEST):
if i % TEST_FILTER == 0:
# idx = np.random.randint(0, NUM_OBJECTS_TEST) # Remove randomization in sampling to stabilize validation
file_path = os.path.join(TEST_DATA_PATH, TEST_FILES[i])
# x = keras.preprocessing.image.load_img(file_path,
# color_mode='grayscale',
# target_size=(224, 224),
# interpolation='nearest')
# x = keras.preprocessing.image.img_to_array(x)
x = cv2.imread(file_path)
x = x / 255.0
# x = x[:, :, 0]
label_class = TEST_FILES[i].split("_")[0]
if label_class == 'night':
label_class = 'night_stand' # Quick fix for label parsing
label_class = utility.int_to_1hot(labels_dict[label_class], 10)
label_view = utility.int_to_1hot(int(TEST_FILES[i].split("_")[-1].split(".")[0]), 60)
yield np.resize(x, (224, 224, 3)), (label_class, label_view)
def dataset_generator_train():
dataset = tf.data.Dataset.from_generator(data_loader_train,
output_types=(tf.float32, (tf.int16, tf.int16)),
output_shapes=(tf.TensorShape([224, 224, 3]),
(tf.TensorShape([10]), tf.TensorShape([60]))))
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.repeat(EPOCHS)
return dataset
def dataset_generator_test():
dataset = tf.data.Dataset.from_generator(data_loader_test,
output_types=(tf.float32, (tf.int16, tf.int16)),
output_shapes=(tf.TensorShape([224, 224, 3]),
(tf.TensorShape([10]), tf.TensorShape([60]))))
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.repeat(EPOCHS)
return dataset
def generate_cnn(app="vgg"):
inputs = keras.Input(shape=(224, 224, 3))
if app == "vgg":
net = keras.applications.VGG16(include_top=False,
weights='imagenet',
input_tensor=inputs)
net.trainable = False
# preprocessed = keras.applications.vgg16.preprocess_input(inputs)
x = net(inputs)
elif app == "efficientnet":
net = keras.applications.EfficientNetB0(include_top=False,
weights='imagenet')
# net.trainable = False
# preprocessed = keras.applications.efficientnet.preprocess_input(inputs)
x = net(inputs)
elif app == "mobilenet":
net = keras.applications.MobileNet(include_top=False,
weights='imagenet',
)
net.trainable = False
# preprocessed = keras.applications.mobilenet.preprocess_input(inputs)
x = net(inputs)
elif app == "mobilenetv2":
net = keras.applications.MobileNetV2(include_top=False,
weights='imagenet',
)
net.trainable = False
# preprocessed = keras.applications.mobilenet_v2.preprocess_input(inputs)
x = net(inputs)
elif app == "vggm":
x = keras.layers.Conv2D(96, kernel_size=7, strides=2, padding='same', kernel_regularizer='l2')(inputs)
x = layers.LeakyReLU()(x)
x = keras.layers.BatchNormalization()(x)
x = keras.layers.MaxPool2D(pool_size=3, strides=2)(x)
x = keras.layers.Dropout(0.5)(x)
x = keras.layers.Conv2D(256, kernel_size=5, strides=2, padding='same', kernel_regularizer='l2')(x)
x = layers.LeakyReLU()(x)
x = keras.layers.BatchNormalization()(x)
x = keras.layers.MaxPool2D(pool_size=3, strides=2)(x)
x = keras.layers.Dropout(0.5)(x)
x = keras.layers.Conv2D(512, kernel_size=3, strides=1, padding='same', kernel_regularizer='l2')(x)
x = layers.LeakyReLU()(x)
x = keras.layers.Dropout(0.5)(x)
x = keras.layers.Conv2D(512, kernel_size=3, strides=1, padding='same', kernel_regularizer='l2')(x)
x = layers.LeakyReLU()(x)
x = keras.layers.Dropout(0.5)(x)
x = keras.layers.Conv2D(512, kernel_size=3, strides=1, padding='same', kernel_regularizer='l2')(x)
x = layers.LeakyReLU()(x)
x = keras.layers.MaxPool2D(pool_size=3, strides=2)(x)
x = keras.layers.Dropout(0.5)(x)
x = keras.layers.Flatten()(x)
x = keras.layers.Dense(4096)(x)
x = layers.LeakyReLU()(x)
x = keras.layers.Dropout(0.5)(x)
x = layers.Flatten()(x)
# x_class = keras.layers.Dense(4096)(x)
# x_class = layers.ReLU()(x_class)
# x_class = keras.layers.Dropout(0.5)(x_class)
# x_class = keras.layers.Dense(220)(x_class)
# x_class = layers.ReLU()(x_class)
# x_class = layers.Dropout(0.5)(x_class)
#
# x_view = keras.layers.Dense(4096)(x)
# x_view = layers.ReLU()(x_view)
# x_view = keras.layers.Dropout(0.5)(x_view)
# x_view = keras.layers.Dense(220)(x_view)
# x_view = layers.ReLU()(x_view)
# x_view = keras.layers.Dropout(0.5)(x_view)
out_class = layers.Dense(10, activation='softmax', name="class")(x)
out_view = layers.Dense(60, activation='softmax', name="view")(x)
model = keras.Model(inputs=inputs, outputs=[out_class, out_view])
model.summary()
losses = {"class": 'categorical_crossentropy',
"view": 'categorical_crossentropy'}
model.compile(keras.optimizers.Adam(learning_rate=float(args.lr)), loss=losses, metrics=METRICS)
# keras.utils.plot_model(model, "net_structure.png", show_shapes=True, expand_nested=True)
return model
def main():
mirrored_strategy = tf.distribute.MirroredStrategy()
model = generate_cnn(app=args.architecture)
num_batches = int((NUM_OBJECTS_TRAIN / TRAIN_FILTER) / BATCH_SIZE)
train_data_gen = dataset_generator_train()
test_data = dataset_generator_test()
if args.load_model is not None:
model.load_weights(args.load_model)
print(f"[INFO] Model {args.load_model} correctly loaded.")
history = model.fit(train_data_gen,
shuffle=True,
steps_per_epoch=num_batches,
batch_size=BATCH_SIZE,
epochs=EPOCHS,
callbacks=CALLBACKS,
validation_data=test_data)
hist_df = pd.DataFrame(history.history)
hist_df.to_csv(os.path.join(MODEL_DIR, f"{TIMESTAMP}_training_history.csv"))
if __name__ == '__main__':
main()