Skip to content

Commit 6dbd64e

Browse files
committed
Add support
1 parent 75c0acd commit 6dbd64e

10 files changed

+1551
-3
lines changed

.pytest_cache/v/cache/lastfailed

+4
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
{
2+
"01_ProjectStructure.ipynb::Cell 1": true,
3+
"01_ProjectStructure.ipynb::Cell 3": true
4+
}

.pytest_cache/v/cache/nodeids

+7
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,7 @@
1+
[
2+
"01_ProjectStructure.ipynb::Cell 0",
3+
"01_ProjectStructure.ipynb::Cell 1",
4+
"01_ProjectStructure.ipynb::Cell 2",
5+
"01_ProjectStructure.ipynb::Cell 3",
6+
"01_ProjectStructure.ipynb::Cell 4"
7+
]

00_Setup.ipynb

+2-1
Original file line numberDiff line numberDiff line change
@@ -30,6 +30,7 @@
3030
"- matplotlib\n",
3131
"- Jupyterlab (recommended)\n",
3232
"- Docker\n",
33+
"- hypothesis\n",
3334
"\n",
3435
"Please follow the instructions below to get these software installed.\n",
3536
"\n",
@@ -453,7 +454,7 @@
453454
],
454455
"metadata": {
455456
"kernelspec": {
456-
"display_name": "Python 3",
457+
"display_name": "Python [default]",
457458
"language": "python",
458459
"name": "python3"
459460
},

01_ProjectStructure.ipynb

+95-1
Original file line numberDiff line numberDiff line change
@@ -209,11 +209,76 @@
209209
" return HTML(styles)\n",
210210
"css_styling()"
211211
]
212+
},
213+
{
214+
"cell_type": "code",
215+
"execution_count": 1,
216+
"metadata": {},
217+
"outputs": [
218+
{
219+
"name": "stdout",
220+
"output_type": "stream",
221+
"text": [
222+
"<generator object <genexpr> at 0x0000019833DAAD00>\n"
223+
]
224+
}
225+
],
226+
"source": [
227+
"print (i for i in range(6))"
228+
]
229+
},
230+
{
231+
"cell_type": "code",
232+
"execution_count": 2,
233+
"metadata": {},
234+
"outputs": [],
235+
"source": [
236+
"import matplotlib.pyplot as plt"
237+
]
238+
},
239+
{
240+
"cell_type": "code",
241+
"execution_count": 5,
242+
"metadata": {},
243+
"outputs": [
244+
{
245+
"data": {
246+
"text/plain": [
247+
"[<matplotlib.lines.Line2D at 0x19836140438>]"
248+
]
249+
},
250+
"execution_count": 5,
251+
"metadata": {},
252+
"output_type": "execute_result"
253+
},
254+
{
255+
"data": {
256+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmYVNWZx/HvGyQaVxRbJQISR01okEVa0KhIkMR1YIyYqGPciBgVlxhHRR2MTExcQUER2RRRIwYQERAFREAUpIEGoVFE3BCiLSqLoNDwzh+nknSKaroaqurW8vs8Tz+p5dD1y03q5eXec88xd0dERPLL96IOICIiqafiLiKSh1TcRUTykIq7iEgeUnEXEclDKu4iInlIxV1EJA+puIuI5CEVdxGRPLRbVB984IEHepMmTaL6eBGRnDRv3rwv3L2opnGRFfcmTZpQWloa1ceLiOQkM/somXE6LSMikodU3EVE8pCKu4hIHlJxFxHJQyruIiJ5KOnibmZ1zGyBmY1P8N7uZjbSzJab2Rwza5LKkCIiUju16dyvA5ZW81434Ct3PwLoC9yzq8FERGTnJVXczawhcCYwpJohXYDhscejgFPMzHY9nohIHtmyBe6+G+bOTftHJdu5PwjcBGyr5v1DgU8A3L0SWAvUjx9kZt3NrNTMSisqKnYirohIjlqwANq1g549YfTotH9cjcXdzM4CPnf3eTsaluC17XbedvdB7l7i7iVFRTXePSsikvu+/RZuuw2OPRZWrYJRo0L3nmbJLD9wAtDZzM4A9gD2NbOn3P3CKmNWAo2AlWa2G7Af8GXK04qI5JJZs6BbN3j3Xbj0UnjgAdh//4x8dI2du7v3dPeG7t4EOA94Na6wA4wDLo497hobs13nLiJSENavh2uugZNOCp37yy/DsGEZK+ywC/Pczay3mXWOPR0K1Dez5cANwC2pCCciknNefhmaN4dHHgkFfvFi+MUvMh6jVqtCuvtrwGuxx72qvP4tcG4qg4mI5JQvv4QbboDhw+EnP4GZM+GEEyKLoztURUR21ejRUFwMTz8dLp4uWBBpYYcI13MXEcl5q1dDjx4wZgwccwxMmgStWkWdClDnLiJSe+7w+OOhW58wIUxtnDMnawo7qHMXEamdDz+E7t1h8uQwG2bIEDjqqKhTbUedu4hIMrZuhX79wkyYN9+EAQPgtdeysrCDOncRkZotXRpuRnrzTTj9dBg4EBo3jjrVDqlzFxGpzpYtcNdd4Vz6u+/CiBHhHHuWF3ZQ5y4ikti8eXDZZbBoEfzqV9C/Pxx0UNSpkqbOXUSkqk2b4JZbwgqOFRXw/PMwcmROFXZQ5y4i8i8zZsBvfwvvvRf+8777oF69qFPtFHXuIiLr1sFVV8HJJ0NlJUyZAoMH52xhBxV3ESl0EyeG6Y0DB8Lvfw9vvw2nnBJ1ql2m0zIiUpi++CIU86eeCneavvEGHHdc1KlSRp27iBQWd3juuVDQn30WevWC+fPzqrCDOncRKSSrVoVz6y+8ACUl4dx6ixZRp0qLZPZQ3cPM3jKzhWa2xMzuTDDmEjOrMLOy2M9v0xNXRGQnuIc1YIqLw2Ya998f7jbN08IOyXXu3wEd3X2DmdUFXjezl9x9dty4ke7eI/URRUR2wYoVcPnl8OqrYTbMkCFwxBFRp0q7ZPZQdXffEHtaN/aj/VFFJLtt3Qp9+4aZMHPnwmOPhQJfAIUdkrygamZ1zKwM+ByY7O5zEgw7x8wWmdkoM2uU0pQiIrWxZEnYCemGG6BjRygvD8v0fq9w5pAk9d/U3be6eyugIdDWzJrHDXkRaOLuLYApwPBEv8fMuptZqZmVVlRU7EpuEZHtbd4MvXtD69bw/vvwzDPw4ovQsGHUyTKuVn+NufvXhA2yT4t7fY27fxd7OhhoU82fH+TuJe5eUlRUtBNxRUSqMXcutGkDd9wB554buvXzzwezqJNFIpnZMkVmVi/2+AdAJ+CduDENqjztDCxNZUgRkWpt3Ag33hjmqX/1FYwbFzaqLvAGMpnZMg2A4WZWh/CXwXPuPt7MegOl7j4OuNbMOgOVwJfAJekKLCLyT6+9Fhb4ev99uOIKuOce2G+/qFNlhRqLu7svAloneL1Xlcc9gZ6pjSYiUo21a+Gmm2DQIPiP/wizYH72s6hTZZXCuXQsIvlh/Hho1izMV7/xxrCZhgr7dlTcRSQ3VFTABRfAf/4nHHAAzJ4d1lvfc8+ok2UlFXcRyW7uYUpj06YwahTceSeUlsKxx0adLKtp4TARyV4rV8KVV4ZTMe3awdCh4ZSM1Eidu4hkn23bwnIBxcUwdSr06QOzZqmw14I6dxHJLsuXh4W+XnstLB0weDAcfnjUqXKOOncRyQ6VlWEp3qOPhgULwmyYKVNU2HeSOncRid6iRdCtW7hQ2qULDBgAP/xh1Klymjp3EYnOd9+FtWDatIGPPoKRI+H551XYU0Cdu4hEY/bs0K2Xl8OFF8KDD0L9+lGnyhvq3EUks775Jqyz/tOfwvr1MGECjBihwp5i6txFJHOmTg0zYT74IGxU/Ze/wL77Rp0qL6lzF5H0+/rrsHpjp06w224wfTo88ogKexqpuItIer3wQrgZ6Ykn4OabYeFCaN8+6lR5T6dlRCQ9PvsMrr0WnnsOWrYM2921SbhJm6SBOncRSS33cIG0uBjGjoW77vrXFniSMclss7eHmb1lZgvNbImZ3ZlgzO5mNtLMlpvZHDNrko6wIpLlPv4YzjwTLroIfvxjKCuDW2+FunWjTlZwkuncvwM6untLoBVwmpkdFzemG/CVux8B9AXuSW1MEclq27aFu0qbNYMZM6BfP5g5MyzTK5Gosbh7sCH2tG7sx+OGdQGGxx6PAk4xK9Atx0UKzbJl0KEDXH01HH88LF4M11wDdepEnaygJXXO3czqmFkZ8Dkw2d3nxA05FPgEwN0rgbWA7kgQyWeVlWFD6hYt4O234fHH4eWXoUmTqJMJSRZ3d9/q7q2AhkBbM2seNyRRlx7f3WNm3c2s1MxKKyoqap9WRLJDWVnYPOOWW8I59vJyuOQS0D/Ys0atZsu4+9fAa8BpcW+tBBoBmNluwH7Alwn+/CB3L3H3kqKiop0KLCIR+vZbuO02KCmBTz8N296NHg0NGkSdTOIkM1umyMzqxR7/AOgEvBM3bBxwcexxV+BVd9+ucxeRHPbGG9C6Nfz5z2Ghr/JyOOecqFNJNZLp3BsA08xsETCXcM59vJn1NrPOsTFDgfpmthy4AbglPXFFJOM2bAg3I514ImzcCJMmhbtNDzgg6mSyAzXeoerui4DWCV7vVeXxt8C5qY0mIpF75RXo3j3MX7/66tC177NP1KkkCbpDVUS299VXcOmlcOqpsMceYe56//4q7DlExV1E/t2YMWHpgBEjwt2lZWXhlIzkFC0cJiLB3/8OPXqE2S+tW8NLL0GrVlGnkp2kzl2k0LmHC6TFxTB+fNhAY84cFfYcp85dpJB9+CFccUW4cHriiTBkSFjwS3KeOneRQrRtW7hA2rx5mL/+8MNhdyQV9ryhzl2k0LzzTtjybtasMBvmscfgsMOiTiUpps5dpFBs2RLmqbdsGe4uHT48XDRVYc9L6txFCsH8+dCtW5jW2LVrOA1z8MFRp5I0Uucuks82bYKePaFt2zDVccwY+NvfVNgLgDp3kXz1+uuhW1+2DC67DO6/H/bfP+pUkiHq3EXyzfr14Wakk06CzZth8mQYOlSFvcCouIvkk0mTwvTGAQPguuvCDkmdOkWdSiKg4i6SD9asgYsvhtNPh732CtMcH3wQ9t476mQSERV3kVzmHi6QFhfDM8/A7bfDggVho2opaLqgKpKrVq+Gq66CsWOhTZuwhEDLllGnkiyRzDZ7jcxsmpktNbMlZnZdgjEdzGytmZXFfnol+l0ikgLuMGwYNG0azrHfey/Mnq3CLv8mmc69EviDu883s32AeWY22d3L48bNdPezUh9RRP7pgw/CzkhTpkD79jB4MBx1VNSpJAvV2Lm7+2p3nx97vB5YChya7mAiUsXWrfDQQ2EmzJw58OijMG2aCrtUq1YXVM2sCWE/1TkJ3j7ezBaa2Utm1qyaP9/dzErNrLSioqLWYUUKUnl5WI73+uvh5JNhyRL43e/ge5oPIdVL+v8dZrY3MBq43t3Xxb09HzjM3VsC/YGxiX6Huw9y9xJ3LykqKtrZzCKFYfNm+L//C7sivfcePPUUTJgAjRpFnUxyQFLF3czqEgr70+4+Jv59d1/n7htijycCdc3swJQmFSkkpaVw7LHQqxecfXbo3v/7v8Es6mSSI5KZLWPAUGCpu/epZswhsXGYWdvY712TyqAiBWHTJrjpJmjXDioqwjTHZ5+Fgw6KOpnkmGRmy5wA/AZ428zKYq/dCjQGcPeBQFfgSjOrBDYB57m7pyGvSP6aPj1sorF8OVx+eZjiWK9e1KkkR9VY3N39dWCH/xZ094eBh1MVSqSgrFsHN98MAwfC4YfD1KnQsWPUqSTH6XK7SJQmTIBmzWDQILjhBli0SIVdUkLFXSQKX3wBF14IZ50F++4bNql+4IGw6JdICqi4i2SSe7hA2rQpjBwJd9wRtsBr1y7qZJJntHCYSKZ8+mlY6GvcOCgpCevDHH101KkkT6lzF0k397AGTHFxWLnx/vvhzTdV2CWt1LmLpNP774dpjdOmQYcOocgfcUTUqaQAqHMXSYetW6FPn9Cdz5sHjz0WpjiqsEuGqHMXSbXFi6FbN3jrrTAb5tFHoWHDqFNJgVHnLpIqmzfDnXfCMcfAihVh27tx41TYJRLq3EVS4a23Qre+eDFccEHYnForn0qE1LmL7IqNG+HGG8OG1F99FTr1p59WYZfIqXMX2VnTpoWFvlasgCuugHvugf32izqVCKDOXaT21q4Nxbxjx7C++quvhkW/VNgli6i4i9TGiy+Gm5GGDAmnYxYtgp/9LOpUIttRcRdJRkUFnH8+dO4M9evD7Nlw332w555RJxNJKJmdmBqZ2TQzW2pmS8zsugRjzMz6mdlyM1tkZsekJ65IhrmHKY1Nm8Lo0WGq4z+2wBPJYslcUK0E/uDu881sH2CemU129/IqY04Hjoz9tAMejf2nSO765BO48sqw5nq7djB0aFh7XSQH1Ni5u/tqd58fe7weWAocGjesC/CkB7OBembWIOVpRTJh27awXECzZuFiaZ8+MGuWCrvklFpNhTSzJkBrYE7cW4cCn1R5vjL22updyCaSee+9Fxb6mj49zIYZPDhsfSeSY5K+oGpmewOjgevdfV382wn+yHYbZJtZdzMrNbPSioqK2iUVSafKynCBtEULWLAgFPUpU1TYJWclVdzNrC6hsD/t7mMSDFkJNKryvCGwKn6Quw9y9xJ3LynSHXySLRYtCneY3nQT/OIXUF4ebk6yHe4LL5LVkpktY8BQYKm796lm2DjgotismeOAte6uUzKS3b77Dnr1gjZt4KOPwrZ3Y8fCofGXlERyTzLn3E8AfgO8bWZlsdduBRoDuPtAYCJwBrAc2AhcmvqoIik0e3ZY6Ku8PGxU/eCDYf66SJ6osbi7++skPqdedYwDV6cqlEjafPMN3H47PPRQ6NAnTIAzzog6lUjKaeEwKRxTp4aZMB98EOav33037Ltv1KlE0kLLD0j++/rrcIG0UyfYbbcwzXHAABV2yWsq7pLfxo4NC3098QTcfDMsXAjt20edSiTtdFpG8tNnn8E118Df/gYtW4bVHNu0iTqVSMaoc5f84g4jRoRu/YUX4E9/grlzVdil4Khzl/zx8cfwu9/BSy+Fm5KGDg2rOYoUIHXukvu2bQsXSJs1CxdLH3oIZs5UYZeCps5dctuyZWEmzMyZYTbMoEHwox9FnUokcurcJTdVVoYNqVu0gLffhmHD4JVXVNhFYtS5S+4pKwtLB8yfD2efDY88Ag20fYBIVercJXd8+y3cdhuUlMCnn8KoUTBmjAq7SALq3CU3vPFG6NbfeQcuvjjsjnTAAVGnEsla6twlu23YANdeCyeeCBs3wqRJ4W5TFXaRHVJxl+z1yivQvDn07w9XXw2LF8Opp0adSiQnqLhL9vnqK7j00lDI99gjTHPs3x/22SfqZCI5Q8VdssuYMWHpgBEjoGfPMDPmxBOjTiWSc5LZZm+YmX1uZoureb+Dma01s7LYT6/Ux5S89/e/Q9eucM45cMghYT2YP/85dO4iUmvJdO5PAKfVMGamu7eK/fTe9VhSMNzDBdLiYhg/PhT0t96C1q2jTiaS05LZZm+GmTVJfxQpOB9+CFdcES6cnnACDBkCP/lJ1KlE8kKqzrkfb2YLzewlM2uWot8p+WrbtnCBtHlzmDUrPJ4xQ4VdJIVScRPTfOAwd99gZmcAY4EjEw00s+5Ad4DGjRun4KMl57zzTljoa9asMBvmscfgsMOiTiWSd3a5c3f3de6+IfZ4IlDXzA6sZuwgdy9x95KioqJd/WjJJVu2hPPpLVtCeTkMHx7WXVdhF0mLXe7czewQ4DN3dzNrS/gLY80uJ5P8sWABXHZZmNbYtSs8/DAcfHDUqUTyWo3F3cz+CnQADjSzlcAdQF0Adx8IdAWuNLNKYBNwnrt72hJL7ti0CXr3hvvug6IiGD0afvnLqFOJFIRkZsucX8P7DwMPpyyR5IfXXw8LfS1bFu42feAB2H//qFOJFAzdoSqptX499OgBJ50EmzeHaY7Dhqmwi2SYirukzqRJYXrjgAFw3XVhh6Sf/zzqVCIFScVddt2aNWGN9dNPh732CtMcH3wQ9t476mQiBUvFXXaee9gNqbgYnnkGbr89zIw5/viok4kUPO3EJDtn9eqwxvrzz0ObNuHcesuWUacSkRh17lI77uECaXFxuAnpnntg9mwVdpEso85dkvfBB9C9O0yZAu3bw+DBcNRRUacSkQTUuUvNtm6Fhx4KM2HmzIFHH4Vp01TYRbKYOnfZsfLysNDXm2+G2TCPPQaNGkWdSkRqoM5dEtuyBf70p7BpxrJl8NRTMGGCCrtIjlDnLtubNy8s9LVoEfz619CvHxx0UNSpRKQW1LnLv2zaBDffDG3bQkUFjB0Lzz6rwi6Sg9S5SzBjRji3/t57cPnlcO+9UK9e1KlEZCepcy9069bBVVfBySeHWTFTp8KgQSrsIjlOxb2QTZwIzZqFGTA33BDOsXfsGHUqEUkBFfdC9MUXcOGFcOaZsO++8MYbYb31vfaKOpmIpEiNxd3MhpnZ52a2uJr3zcz6mdlyM1tkZsekPqakhDuMHBmWDhg5Eu64A+bPh3btok4mIimWTOf+BHDaDt4/HTgy9tMdeHTXY0nKrVoF//VfcN55YVPq+fPhj3+E3XePOpmIpEGNxd3dZwBf7mBIF+BJD2YD9cysQaoCyi5yhyFDQrc+eTLcf3+42/Too6NOJiJplIpz7ocCn1R5vjL22nbMrLuZlZpZaUVFRQo+Wnbo/fehU6cwtbF163DB9A9/gN00A1Yk36WiuFuC1zzRQHcf5O4l7l5SVFSUgo+WhLZuhT59QndeWgoDB4YpjkccEXUyEcmQVLRwK4GqC440BFal4PfKzli8GLp1g7fegrPOCis4NmwYdSoRybBUdO7jgItis2aOA9a6++oU/F6pjc2b4c474ZhjYMWKsO3duHEq7CIFqsbO3cz+CnQADjSzlcAdQF0Adx8ITATOAJYDG4FL0xVWqjF3bljoa/FiuOCCsDm1TnuJFLQai7u7n1/D+w5cnbJEkryNG6FXL+jbFxo0gBdfDKdiRKTgadpErpo2LSz0tWIFXHFF2Mt0v/2iTiUiWULLD+SatWtDMe/YEcxCkR84UIVdRP6NinsuefHFcDPSkCFw441h3nqHDlGnEpEspOKeCyoqwoXSzp2hfn2YPRvuuw/23DPqZCKSpVTcs5l7mNLYtCmMGgW9e4ebko49NupkIpLldEE1W33yCVx5ZdiUul07GDo0rL0uIpIEde7ZZtu2sHlGs2bhYmnfvjBrlgq7iNSKOvds8o/9S6dPh1NOCdvdHX541KlEJAepc88GlZVhKd4WLaCsLMyGmTxZhV1Edpo696gtWhQW+iothS5dYMAA+OEPo04lIjlOnXtUvvsuLB3Qpg189FHY9u7551XYRSQl1LlHYfbs0K2Xl8NvfhMumtavH3UqEckj6twz6Ztv4Pe/h5/+FNavh4kT4cknVdhFJOXUuWfK1KlhJswHH8BVV8Ff/gL77ht1KhHJU+rc0+3rr8PqjZ06hb1Lp0+HRx5RYReRtFJxT6exY8NCX088ATffDAsXQvv2UacSkQKQVHE3s9PM7F0zW25mtyR4/xIzqzCzstjPb1MfNYd89hn86ldw9tlw0EEwZw7cfTf84AdRJxORApHMNnt1gEeAnxM2w55rZuPcvTxu6Eh375GGjLnDHZ56Cq6/HjZsgLvugv/5H6hbN+pkIlJgkunc2wLL3X2Fu28GngW6pDdWDvr4YzjzTLjoIvjxj8OdprfeqsIuIpFIprgfCnxS5fnK2GvxzjGzRWY2yswaJfpFZtbdzErNrLSiomIn4mahbdvCXaXNmsGMGdCvH8ycGZbpFRGJSDLF3RK85nHPXwSauHsLYAowPNEvcvdB7l7i7iVFRUW1S5qN3n0XTj4Zrr4ajj8eFi+Ga66BOnWiTiYiBS6Z4r4SqNqJNwRWVR3g7mvc/bvY08FAm9TEy1KVleECacuWoaA//ji8/DI0aRJ1MhERILniPhc40sx+ZGbfB84DxlUdYGYNqjztDCxNXcQsU1YWNs/o2TOcY1+6FC65JGxWLSKSJWos7u5eCfQAXiYU7efcfYmZ9TazzrFh15rZEjNbCFwLXJKuwJH59lu47TYoKYFPPw3b3o0eDYccEnUyEZHtmHv86fPMKCkp8dLS0kg+u9ZmzQp3mb7zDlx8MfTpAwccEHUqESlAZjbP3UtqGqc7VHdkwwa49lo46STYuBEmTQp3m6qwi0iWU3GvziuvQPPm8PDD0KNHuHB66qlRpxIRSYqKe7wvv4RLLw2FfI89wpz1fv1gn32iTiYikjQV96pGjw4LfY0YEe4uLSuDE06IOpWISK1pPXeA1avDqZcxY6B163BuvVWrqFOJiOy0wu7c3cMF0uJimDAhbKAxZ44Ku4jkvMLt3D/8ELp3h8mT4cQTYciQsOCXiEgeKLzOfds26N8/zIR5882wK9L06SrsIpJXCqtzX7o03Iz0xhtw2mkwcCAcdljUqUREUq4wOvctW8LGGa1ahbtMn3wSJk5UYReRvJX/nfv8+XDZZWH/0nPPDadkDj446lQiImmVv537pk1wyy3Qtm3Y03TMGHjuORV2ESkI+dm5z5wZzq0vWwbdusF998H++0edSkQkY/Krc1+3LuyK1L49bN4cpjkOGaLCLiIFJ3+K+0svhemNjz4K118fFvrq1CnqVCIikUiquJvZaWb2rpktN7NbEry/u5mNjL0/x8yapDpotdasgYsugjPOgL33Dmuv9+0Le+2VsQgiItmmxuJuZnWAR4DTgWLgfDMrjhvWDfjK3Y8A+gL3pDrodtzDBdKmTeGvf4X//V9YsCBsVC0iUuCS6dzbAsvdfYW7bwaeBbrEjekCDI89HgWcYpbGTUVXrYJf/hJ+/Wto3BjmzYPevWH33dP2kSIiuSSZ4n4o8EmV5ytjryUcE9tzdS1QPxUBtzNxYljoa9IkuPdemD0bWrRIy0eJiOSqZKZCJurA4zdeTWYMZtYd6A7QuHHjJD46gaOOCqde+vWDI4/cud8hIpLnkuncVwKNqjxvCKyqboyZ7QbsB3wZ/4vcfZC7l7h7SVFR0c4lPuKIMDNGhV1EpFrJFPe5wJFm9iMz+z5wHjAubsw44OLY467Aq+6+XecuIiKZUeNpGXevNLMewMtAHWCYuy8xs95AqbuPA4YCI8xsOaFjPy+doUVEZMeSWn7A3ScCE+Ne61Xl8bfAuamNJiIiOyt/7lAVEZF/UnEXEclDKu4iInlIxV1EJA+puIuI5CGLajq6mVUAH+3kHz8Q+CKFcVIlW3NB9mZTrtpRrtrJx1yHuXuNd4FGVtx3hZmVuntJ1DniZWsuyN5sylU7ylU7hZxLp2VERPKQiruISB7K1eI+KOoA1cjWXJC92ZSrdpSrdgo2V06ecxcRkR3L1c5dRER2IKuLe7ZuzJ1ErkvMrMLMymI/v81QrmFm9rmZLa7mfTOzfrHci8zsmCzJ1cHM1lY5Xr0SjUtxpkZmNs3MlprZEjO7LsGYjB+vJHNl/HjFPncPM3vLzBbGst2ZYEzGv5NJ5orqO1nHzBaY2fgE76X3WLl7Vv4Qlhd+Hzgc+D6wECiOG3MVMDD2+DxgZJbkugR4OIJj1h44BlhczftnAC8Rds46DpiTJbk6AOMzfKwaAMfEHu8DLEvwv2PGj1eSuTJ+vGKfa8Descd1gTnAcXFjovhOJpMrqu/kDcAzif73SvexyubOPfs25k4+VyTcfQYJdsCqogvwpAezgXpm1iALcmWcu6929/mxx+uBpWy/N3DGj1eSuSIROw4bYk/rxn7iL9pl/DuZZK6MM7OGwJnAkGqGpPVYZXNxz66NuWuXC+Cc2D/lR5lZowTvRyHZ7FE4PvbP6pfMrFkmPzj2z+HWhI6vqkiP1w5yQUTHK3aaoQz4HJjs7tUeswx+J5PJBZn/Tj4I3ARsq+b9tB6rbC7uKduYO8WS+cwXgSbu3gKYwr/+do5aFMcrGfMJt1S3BPoDYzP1wWa2NzAauN7d18W/neCPZOR41ZArsuPl7lvdvRVhL+W2ZtY8bkgkxyyJXBn9TprZWcDn7j5vR8MSvJayY5XNxT1lG3NnOpe7r3H372JPBwNt0pwpWckc04xz93X/+Ge1h12/6prZgen+XDOrSyigT7v7mARDIjleNeWK6njFZfgaeA04Le6tKL6TNeaK4Dt5AtDZzD4knLrtaGZPxY1J67HK5uKerRtz15gr7rxsZ8J502wwDrgoNgvkOGCtu6+OOpSZHfKPc41m1pbw/8s1af5MI+z9u9Td+1QzLOPHK5lcURyv2GcVmVm92OMfAJ2Ad+KGZfw7mUyuTH8n3b2nuzd09yaEGvGqu18YNyzyr8X4AAAAs0lEQVStxyqpPVSj4Fm6MXeSua41s85AZSzXJenOBWBmfyXMpDjQzFYCdxAuLuHuAwn74J4BLAc2ApdmSa6uwJVmVglsAs7LwF/SJwC/Ad6OnasFuBVoXCVXFMcrmVxRHC8IM3mGm1kdwl8oz7n7+Ki/k0nmiuQ7GS+Tx0p3qIqI5KFsPi0jIiI7ScVdRCQPqbiLiOQhFXcRkTyk4i4ikodU3EVE8pCKu4hIHlJxFxHJQ/8PXj5794ftzyMAAAAASUVORK5CYII=\n",
257+
"text/plain": [
258+
"<Figure size 432x288 with 1 Axes>"
259+
]
260+
},
261+
"metadata": {},
262+
"output_type": "display_data"
263+
}
264+
],
265+
"source": [
266+
"%matplotlib inline\n",
267+
"x = range(5)\n",
268+
"plt.plot(x, x, color='red' )"
269+
]
270+
},
271+
{
272+
"cell_type": "code",
273+
"execution_count": null,
274+
"metadata": {},
275+
"outputs": [],
276+
"source": []
212277
}
213278
],
214279
"metadata": {
215280
"kernelspec": {
216-
"display_name": "Python 3",
281+
"display_name": "Python [default]",
217282
"language": "python",
218283
"name": "python3"
219284
},
@@ -228,6 +293,35 @@
228293
"nbconvert_exporter": "python",
229294
"pygments_lexer": "ipython3",
230295
"version": "3.6.5"
296+
},
297+
"varInspector": {
298+
"cols": {
299+
"lenName": 16,
300+
"lenType": 16,
301+
"lenVar": 40
302+
},
303+
"kernels_config": {
304+
"python": {
305+
"delete_cmd_postfix": "",
306+
"delete_cmd_prefix": "del ",
307+
"library": "var_list.py",
308+
"varRefreshCmd": "print(var_dic_list())"
309+
},
310+
"r": {
311+
"delete_cmd_postfix": ") ",
312+
"delete_cmd_prefix": "rm(",
313+
"library": "var_list.r",
314+
"varRefreshCmd": "cat(var_dic_list()) "
315+
}
316+
},
317+
"types_to_exclude": [
318+
"module",
319+
"function",
320+
"builtin_function_or_method",
321+
"instance",
322+
"_Feature"
323+
],
324+
"window_display": false
231325
}
232326
},
233327
"nbformat": 4,

CITATION.cff

+1-1
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,6 @@ authors:
55
given-names: Tania
66
orcid: https://orcid.org/0000-0003-4925-7248
77
title: 101 on reproducible workflows with Python
8-
version: 1.0
8+
version: 1.1
99
doi: 10.5281/zenodo.1241112
1010
date-released: 2018-05-04

0 commit comments

Comments
 (0)