|
| 1 | +.. _benchmark-skycallback: |
| 2 | + |
| 3 | +SkyCallback |
| 4 | +=========== |
| 5 | + |
| 6 | +SkyCallback is a simple Python library that works in conjunction with SkyPilot Benchmark. |
| 7 | +It enables SkyPilot to provide a more detailed benchmark report without the need to wait until the task finishes. |
| 8 | + |
| 9 | +What SkyCallback is for |
| 10 | +-------------------------------------------- |
| 11 | + |
| 12 | +SkyCallback is designed for **machine learning tasks** which have a loop iterating many `steps`. |
| 13 | +SkyCallback measures the average time taken by each step, and extrapolates it to the total execution time of the task. |
| 14 | + |
| 15 | +Installing SkyCallback |
| 16 | +-------------------------------------------- |
| 17 | + |
| 18 | +Unlike SkyPilot, SkyCallback must be installed and imported `in your program`. |
| 19 | +To install it, add the following line in the ``setup`` section of your task YAML. |
| 20 | + |
| 21 | +.. code-block:: yaml |
| 22 | +
|
| 23 | + setup: |
| 24 | + # Activate conda or virtualenv if you use one |
| 25 | + # Then, install SkyCallback |
| 26 | + pip install "git+https://github.com/skypilot-org/skypilot.git#egg=sky-callback&subdirectory=sky/callbacks/" |
| 27 | +
|
| 28 | +
|
| 29 | +Using SkyCallback generic APIs |
| 30 | +-------------------------------------------- |
| 31 | + |
| 32 | +The SkyCallback generic APIs are for **PyTorch, TensorFlow, and JAX** programs where training loops are exposed to the users. |
| 33 | +Below we provide the instructions for using the APIs. |
| 34 | + |
| 35 | +First, import the SkyCallback package and initialize it using ``init``. |
| 36 | + |
| 37 | +.. code-block:: python |
| 38 | +
|
| 39 | + import sky_callback |
| 40 | + sky_callback.init() |
| 41 | +
|
| 42 | +Next, mark the beginning and end of each step using one of the three equivalent methods. |
| 43 | + |
| 44 | +.. code-block:: python |
| 45 | +
|
| 46 | + # Method 1: wrap your iterable (e.g., dataloader) with `step_iterator`. |
| 47 | + from sky_callback import step_iterator |
| 48 | + for batch in step_iterator(train_dataloader): |
| 49 | + ... |
| 50 | +
|
| 51 | + # Method 2: wrap your loop body with the `step` context manager. |
| 52 | + for batch in train_dataloader: |
| 53 | + with sky_callback.step(): |
| 54 | + ... |
| 55 | +
|
| 56 | + # Method 3: call `step_begin` and `step_end` directly. |
| 57 | + for batch in train_dataloader: |
| 58 | + sky_callback.step_begin() |
| 59 | + ... |
| 60 | + sky_callback.step_end() |
| 61 | +
|
| 62 | +That's it. |
| 63 | +Now you can launch your task and get a detailed benchmark report using SkyPilot Benchmark CLI. |
| 64 | +`Here <https://github.com/skypilot-org/skypilot/blob/master/examples/benchmark/timm/callback.patch>`_ we provide an example of applying SkyCallback to Pytorch ImageNet training. |
| 65 | + |
| 66 | +.. note:: |
| 67 | + |
| 68 | + Optionally in ``sky_callback.init``, you can specify the total number of steps that the task will iterate through. |
| 69 | + This information is needed to estimate the total execution time/cost of your task. |
| 70 | + |
| 71 | + .. code-block:: python |
| 72 | + |
| 73 | + sky_callback.init( |
| 74 | + total_steps=num_epochs * len(train_dataloader), # Optional |
| 75 | + ) |
| 76 | +
|
| 77 | +.. note:: |
| 78 | + In distributed training, ``global_rank`` should be additionally passed to ``sky_callback.init`` as follows: |
| 79 | + |
| 80 | + .. code-block:: python |
| 81 | +
|
| 82 | + # PyTorch DDP users |
| 83 | + global_rank = torch.distributed.get_rank() |
| 84 | +
|
| 85 | + # Horovod users |
| 86 | + global_rank = hvd.rank() |
| 87 | +
|
| 88 | + sky_callback.init( |
| 89 | + global_rank=global_rank, |
| 90 | + total_steps=num_epochs * len(train_dataloader), # Optional |
| 91 | + ) |
| 92 | +
|
| 93 | +Integrations with ML frameworks |
| 94 | +---------------------------------------------------------- |
| 95 | + |
| 96 | +Using SkyCallback is even easier for **Keras, PytorchLightning, and HuggingFace Transformers** programs where trainer APIs are used. |
| 97 | +SkyCallback natively supports these frameworks with simple interface. |
| 98 | + |
| 99 | +* Keras example |
| 100 | + |
| 101 | +.. code-block:: python |
| 102 | +
|
| 103 | + from sky_callback import SkyKerasCallback |
| 104 | +
|
| 105 | + # Add the callback to your Keras model. |
| 106 | + model.fit(..., callbacks=[SkyKerasCallback()]) |
| 107 | +
|
| 108 | +`Here <https://github.com/skypilot-org/skypilot/blob/master/examples/benchmark/keras_asr/callback.patch>`_ you can find an example of applying SkyCallback to Keras ASR model training. |
| 109 | + |
| 110 | +* PytorchLightning example |
| 111 | + |
| 112 | +.. code-block:: python |
| 113 | +
|
| 114 | + from sky_callback import SkyLightningCallback |
| 115 | +
|
| 116 | + # Add the callback to your trainer. |
| 117 | + trainer = pl.Trainer(..., callbacks=[SkyLightningCallback()]) |
| 118 | +
|
| 119 | +`Here <https://github.com/skypilot-org/skypilot/blob/master/examples/benchmark/lightning_gan/callback.patch>`_ you can find an example of applying SkyCallback to PyTorchLightning GAN model training. |
| 120 | + |
| 121 | +* HuggingFace Transformers example |
| 122 | + |
| 123 | +.. code-block:: python |
| 124 | +
|
| 125 | + from sky_callback import SkyTransformersCallback |
| 126 | +
|
| 127 | + # Add the callback to your trainer. |
| 128 | + trainer = transformers.Trainer(..., callbacks=[SkyTransformersCallback()]) |
| 129 | +
|
| 130 | +`Here <https://github.com/skypilot-org/skypilot/blob/master/examples/benchmark/transformers_qa/callback.patch>`_ you can find an example of applying SkyCallback to HuggingFace BERT fine-tuning. |
| 131 | + |
| 132 | +.. note:: |
| 133 | + When using the framework-integrated callbacks, do not call ``sky_callback.init`` for initialization. |
| 134 | + The callbacks will do it for you. |
0 commit comments