-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpartial_sums_of_sigma_function_fast.sf
68 lines (51 loc) · 1.79 KB
/
partial_sums_of_sigma_function_fast.sf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/ruby
# Author: Daniel "Trizen" Șuteu
# Date: 08 November 2018
# https://github.com/trizen
# A new generalized algorithm with O(sqrt(n)) complexity for computing the partial-sums of the `sigma_j(k)` function:
#
# Sum_{k=1..n} sigma_j(k)
#
# for any j >= 0.
# See also:
# https://en.wikipedia.org/wiki/Divisor_function
# https://en.wikipedia.org/wiki/Faulhaber%27s_formula
# https://en.wikipedia.org/wiki/Bernoulli_polynomials
# https://trizenx.blogspot.com/2018/08/interesting-formulas-and-exercises-in.html
func fast_sigma_partial_sum(n, m) { # O(sqrt(n)) complexity
var x = n.isqrt
var total = 0
var r = floor((n - x*x) / x)
for k in (2 .. x) {
total += ((k-1) * (faulhaber_sum(floor(n/(k-1)), m) - faulhaber_sum(floor(n/k), m)))
}
for k in (1 .. x+r) {
total += (k**m * floor(n/k))
}
return total
}
func sigma_partial_sum(n, m) { # just for testing
sum(1..n, {|k| k.sigma(m) })
}
say fast_sigma_partial_sum(64, 1) #=> 3403
say fast_sigma_partial_sum(1234, 1) #=> 1252881
say fast_sigma_partial_sum(10**8, 1) #=> 8224670422194237
for m in (0..10) {
var n = 1000.irand
var t1 = sigma_partial_sum(n, m)
var t2 = fast_sigma_partial_sum(n, m)
assert_eq(t1, t2)
say "Sum_{k=1..#{n}} sigma_#{m}(k) = #{t2}"
}
__END__
Sum_{k=1..636} sigma_0(k) = 4207
Sum_{k=1..792} sigma_1(k) = 516685
Sum_{k=1..931} sigma_2(k) = 323806973
Sum_{k=1..169} sigma_3(k) = 223193496
Sum_{k=1..488} sigma_4(k) = 5769713450709
Sum_{k=1..273} sigma_5(k) = 70956696365063
Sum_{k=1..145} sigma_6(k) = 198809981088528
Sum_{k=1..683} sigma_7(k) = 5978226604112758227128
Sum_{k=1..526} sigma_8(k) = 346112075042681515591218
Sum_{k=1..182} sigma_9(k) = 4102255527573432874448
Sum_{k=1..828} sigma_10(k) = 11482542651434233742306411936154