|
| 1 | +#!/usr/bin/ruby |
| 2 | + |
| 3 | +# Daniel "Trizen" Șuteu |
| 4 | +# Date: 04 February 2019 |
| 5 | +# https://github.com/trizen |
| 6 | + |
| 7 | +# A sublinear algorithm for computing the partial sums of the gcd-sum function, using Dirichlet's hyperbola method. |
| 8 | + |
| 9 | +# The partial sums of the gcd-sum function is defined as: |
| 10 | +# |
| 11 | +# a(n) = Sum_{k=1..n} Sum_{d|k} d*phi(k/d) |
| 12 | +# |
| 13 | +# where phi(k) is the Euler totient function. |
| 14 | + |
| 15 | +# Also equivalent with: |
| 16 | +# a(n) = Sum_{j=1..n} Sum_{i=1..j} gcd(i, j) |
| 17 | + |
| 18 | +# Based on the formula: |
| 19 | +# a(n) = (1/2)*Sum_{k=1..n} phi(k) * floor(n/k) * floor(1+n/k) |
| 20 | + |
| 21 | +# Example: |
| 22 | +# a(10^1) = 122 |
| 23 | +# a(10^2) = 18065 |
| 24 | +# a(10^3) = 2475190 |
| 25 | +# a(10^4) = 317257140 |
| 26 | +# a(10^5) = 38717197452 |
| 27 | +# a(10^6) = 4571629173912 |
| 28 | +# a(10^7) = 527148712519016 |
| 29 | +# a(10^8) = 59713873168012716 |
| 30 | +# a(10^9) = 6671288261316915052 |
| 31 | + |
| 32 | +# OEIS sequences: |
| 33 | +# https://oeis.org/A272718 -- Partial sums of gcd-sum sequence A018804. |
| 34 | +# https://oeis.org/A018804 -- Pillai's arithmetical function: Sum_{k=1..n} gcd(k, n). |
| 35 | + |
| 36 | +# See also: |
| 37 | +# https://en.wikipedia.org/wiki/Dirichlet_hyperbola_method |
| 38 | +# https://trizenx.blogspot.com/2018/11/partial-sums-of-arithmetical-functions.html |
| 39 | + |
| 40 | +func partial_sums_of_gcd_sum_function(n) { |
| 41 | + var s = n.isqrt |
| 42 | + |
| 43 | + var mertens_lookup = [0,1] |
| 44 | + var euler_sum_lookup = [0,1] |
| 45 | + |
| 46 | + var lookup_size = n.iroot(3)**2 # O(n^(2/3)) |
| 47 | + |
| 48 | + for i in (1 .. lookup_size) { |
| 49 | + mertens_lookup[i] = (mertens_lookup[i-1] + i.moebius) |
| 50 | + euler_sum_lookup[i] = (euler_sum_lookup[i-1] + i.euler_phi) |
| 51 | + } |
| 52 | + |
| 53 | + func moebius_partial_sum(n) { |
| 54 | + |
| 55 | + if (n <= lookup_size) { |
| 56 | + return mertens_lookup[n] |
| 57 | + } |
| 58 | + |
| 59 | + n.mertens |
| 60 | + } |
| 61 | + |
| 62 | + func euler_phi_partial_sum(n) { |
| 63 | + |
| 64 | + if (n <= lookup_size) { |
| 65 | + return euler_sum_lookup[n] |
| 66 | + } |
| 67 | + |
| 68 | + var s = n.isqrt |
| 69 | + |
| 70 | + var A = sum(1..s, {|a| |
| 71 | + (a * moebius_partial_sum(floor(n/a))) + (moebius(a) * faulhaber(floor(n/a), 1)) |
| 72 | + }) |
| 73 | + |
| 74 | + var C = (moebius_partial_sum(s) * faulhaber(s, 1)) |
| 75 | + |
| 76 | + return (A - C) |
| 77 | + } |
| 78 | + |
| 79 | + var A = sum(1..s, {|a| |
| 80 | + (a * euler_phi_partial_sum(floor(n/a))) + (euler_phi(a) * faulhaber(floor(n/a), 1)) |
| 81 | + }) |
| 82 | + |
| 83 | + var C = (euler_phi_partial_sum(s) * faulhaber(s, 1)) |
| 84 | + |
| 85 | + return (A - C) |
| 86 | +} |
| 87 | + |
| 88 | +func g(n) { n } |
| 89 | +func h(n) { euler_phi(n) } |
| 90 | + |
| 91 | +func test_sum(n, g, h) { |
| 92 | + sum(1..n, {|k| |
| 93 | + k.divisors.sum {|d| |
| 94 | + g(d) * h(k/d) |
| 95 | + } |
| 96 | + }) |
| 97 | +} |
| 98 | + |
| 99 | +say 20.of { test_sum(_, g, h) } |
| 100 | +say 20.of { partial_sums_of_gcd_sum_function(_) } |
| 101 | + |
| 102 | +__END__ |
| 103 | +[0, 1, 4, 9, 17, 26, 41, 54, 74, 95, 122, 143, 183, 208, 247, 292, 340, 373, 436, 473] |
| 104 | +[0, 1, 4, 9, 17, 26, 41, 54, 74, 95, 122, 143, 183, 208, 247, 292, 340, 373, 436, 473] |
0 commit comments