-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_university_admission.py
35 lines (32 loc) · 1.36 KB
/
predict_university_admission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import joblib
import pandas as pd
def input_data(x1, x2, x3, x4, x5, x6, x7):
input_data = [[x1, x2, x3, x4, x5, x6, x7]]
new_data = pd.DataFrame(input_data,
columns = ['GRE Score',
'TOEFL Score',
'University Rating',
'SOP',
'LOR ',
'CGPA',
'Research'])
return new_data
def prediction(model, data):
result = model.predict(data)
return result[0]
if __name__ == "__main__" :
model = joblib.load("model/university_admission.sav")
print('\n----------------University Admission Prediction----------------\n')
print("""This project aims to predict the likelihood of a student
being admitted to a university using linear regression\n""")
print('Please input the variables: ')
var_1 = input('1. GRE Score: ')
var_2 = input('2. TOEFL Score: ')
var_3 = input('3. University Rating: ')
var_4 = input('4. SOP: ')
var_5 = input('5. LOR: ')
var_6 = input('6. CGPA: ')
var_7 = input('7. Research: ')
new_data = input_data(var_1, var_2, var_3, var_4, var_5, var_6, var_7)
predict = prediction(model, new_data)
print(f"Admission Chance: {predict:.2f}")