This repository was archived by the owner on Oct 6, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinal_script.py
212 lines (162 loc) · 6.7 KB
/
final_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#! Carrier Registry contract. Allows carriers to register their truck's IoT
#! devices, record trips, and rate trip quality based on sensor data.
#!
#! Copyright (c) 2017 Mayur Andulkar
#!
#! Permission is hereby granted, free of charge, to any person obtaining a copy
#! of this software and associated documentation files (the "Software"), to deal
#! in the Software without restriction, including without limitation the rights
#! to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#! copies of the Software, and to permit persons to whom the Software is
#! furnished to do so, subject to the following conditions:
#
#! The above copyright notice and this permission notice shall be included in all
#! copies or substantial portions of the Software.
#!
#! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#! IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#! FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#! AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#! LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#! OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
#! SOFTWARE.
# ## Data aggregation
# This script does the data aggregation.
#
# Inputs: data in json format
#
# Output: Runs a simulation of the real data based on the time internval and
# makes trasactions on the blockchain for changes in the light intensity and ACCELEROMETER data.
import json
import numpy as np
import datetime
print(str(np.datetime64(datetime.datetime.now()))+" Probable spoon simulation started")
from blockChain_contract import connect_to_chain
import time
LIGHT_THRESHOLD = 500
ACC_THRESHOLD = -0.5
## To add a block to the blockChain just do this:
def add_blk_light(w3, contract_instance, trip_id,timestampVal, lightVal):
r = contract_instance.transact().trackLightEvent(trip_id,timestampVal,int(lightVal))
def add_blk_bump(w3, contract_instance,trip_id,timestampVal, accVal):
r = contract_instance.transact().trackBumpEvent(trip_id,timestampVal,int(abs(accVal*100000)))
# ## Data info
# * sensorType
# * valueLength
# * values
# * timestamp
# * sensorLocation
# ## Data pre processing
allData = []
for line in open('./data/trailer-D.json', 'r'):
parsed_json = json.loads(line)
allData.append(parsed_json)
def getTripid(trip_filter):
trip_id_list = []
for trip_dict in trip_filter:
trip_id_list.append(trip_dict['args']['tripID'])
return trip_id_list[-1]
assert allData != []
## Connect to a block chain and the get the trip id based on event trigger
addr = "0x0D84efb69AE7d1E3f4aE264248797f1F6024062a"
## Connect to the block chain
w3, contract_instance = connect_to_chain(addr)
new_trip_filter = contract_instance.on('TripRegistered',{})
## Start a new trip
transaction_id = contract_instance.transact().newTrip(0,0)
time.sleep(20)
trip_filter = new_trip_filter.get()
trip_id = getTripid(trip_filter)
print(str(np.datetime64(datetime.datetime.now()))+" Trip id: "+str(trip_id)+" registered for "+addr)
## Preprocess the sensor data
sensors = set()
for data in allData:
aa = data['sensorType']
sensors.update(set([aa]))
# print(aa)
# print("Sensor types in the data", sensors)
class SensorDataALL(object):
sensor = ""
# The class "constructor" - It's actually an initializer
def __init__(self, sensor):
self.sensor = sensor
class SensorDataInfo(object):
valueLength = None
values = 0
# dt = datetime.datetime(2012, 5, 1)
timestamp = datetime.datetime.now()
sensorLocation = ""
# The class "constructor" - It's actually an initializer
def __init__(self, valueLength, values, timestamp, sensorLocation, intTimeStamp):
self.valueLength = valueLength
self.values = values
self.timestamp = timestamp
self.sensorLocation = sensorLocation
self.intTimeStamp = intTimeStamp
def getvalues(self):
return self.values
def getvalueLength(self):
return self.valueLength
def gettimestamp(self):
return self.timestamp
def getsensorLocation(self):
return self.sensorLocation
def getintTimeStamp(self):
return self.intTimeStamp
sensor_data = dict()
for sensor in sensors:
sensor_data[sensor]=[]
for data in allData:
if data['sensorType'] ==sensor:
timestamp1 =datetime.datetime.fromtimestamp(int(data['timestamp'])/ 1000.0).strftime('%Y-%m-%d %H:%M:%S.%f')
sensr_obj = SensorDataInfo(data['valueLength'],data['values'],timestamp1,data['sensorLocation'],data['timestamp'])
sensor_data[sensor].append(sensr_obj)
#########################################################
########### Data preprocesssing done!!!##############
#########################################################
## Now we run the truck data as a simulation in real time
# 1. Get the time data as a difference
light_ = []
acc_x = []
acc_y = []
acc_z = []
time_stamp = []
intTimeStamp = []
for sens,data in sensor_data.items():
if sens=="ACCELEROMETER":
for dat in data:
acc_x.append(dat.getvalues()[0])
acc_y.append(dat.getvalues()[1])
acc_z.append(dat.getvalues()[2])
intTimeStamp.append(dat.getintTimeStamp())
time_stamp.append(np.datetime64(dat.gettimestamp()))
if sens=="LIGHT":
for dat in data:
light_.append(dat.getvalues())
try:
assert len(light_) == len(time_stamp)
assert len(acc_z) == len(time_stamp)
except:
pass
# print(str(np.datetime64(datetime.datetime.now()))+" Length of time stamp does not match that of sensor data")
time_diff = np.diff(time_stamp)/np.timedelta64(1, 's')
print(str(np.datetime64(datetime.datetime.now()))+" Simulator started")
try:
## Run the truck data as simulation
for i in range(1,len(acc_z)):
#Data anomalies
if abs(light_[i]-light_[i-1])>LIGHT_THRESHOLD:
print(str(np.datetime64(datetime.datetime.now()))+" The state of the light was changed")
add_blk_light(w3,contract_instance,trip_id,intTimeStamp[i], light_[i])
# ACC_THRESHOLD is absolute. If bumpy road occurs, then perform a commit on the blockChain
if acc_z[i]>ACC_THRESHOLD:
print(str(np.datetime64(datetime.datetime.now()))+" Tracking bumpy road")
add_blk_bump(w3,contract_instance,trip_id,intTimeStamp[i], acc_z[i])
else:
print(str(np.datetime64(datetime.datetime.now()))+" No notable change detected")
# print("Sleeping for time: ",time_diff[i])
time.sleep(time_diff[i])
except:
pass
print(str(np.datetime64(datetime.datetime.now()))+" End of trip")
contract_instance.transact().finalizeTrip(trip_id)