-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_adding_trends.py
executable file
·415 lines (333 loc) · 16.7 KB
/
_adding_trends.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# TO BE CLEANED -----------------------------
# Modules
import pandas as pd
import os as os
import statistics as stcs
import numpy as np
import itertools as itr
import pandas as pd
import statsmodels.formula.api as sm
import datetime
import yaml
import importlib
import warnings
# Import SETTINGS-file
with open("./SETTINGS.yml", 'r') as stream:
try:
SETTINGS = yaml.safe_load(stream)
except yaml.YAMLError as exc:
print(exc)
# Import helpers
spec = importlib.util.spec_from_file_location("noname", "./gen_helpers.py")
helpers = importlib.util.module_from_spec(spec)
spec.loader.exec_module(helpers)
# ----------------------------------
def _make_tuples(self,
windowlength,
series,
trendtype):
# Note: In "simple" current return is just one normal piece in trend calculation
# ..... In "sophisticated" current return is benchmark from which others are substracted
# ..... This makes no difference in creation of tuples but only in add_trend_shortterm()
tuple_selections_over_time = list()
for t in range(0,len(series)):
tuple_selection_for_period = list()
tuplenumber = windowlength if trendtype == "simple" else windowlength + 1
for k in range(0,tuplenumber):#make one tuple extra, as first tuple is for current return
if t+k+1 < len(series):
tuple_selection_for_period.append([t+k,t+k+1])
tuple_selections_over_time.append(tuple_selection_for_period)
return tuple_selections_over_time
def add_trend_shortterm(
self,
var,
wlength = "from_config",
scalingvar = "from_config",
minobs = "from_config",
trendtype = "sophisticated"):
# Input either from config file or specified in arguments
if wlength == "from_config":
wlength = self.config["dataloading"]["trend_shortterm_windowlength"]
elif not type(wlength) == int:
raise TypeError("Input has to be an integer.")
if scalingvar == "from_config":
scalingvar = self.config["dataloading"]["trend_shortterm_scaling"]
elif not type(wlength) == int:
raise TypeError("Input has to be an integer.")
if minobs == "from_config":
minobs = self.config["dataloading"]["trend_shortterm_minobs"]
elif not type(wlength) == int:
raise TypeError("Input has to be an integer.")
if trendtype == "from_config":
trendtype = self.config["dataloading"]["trend_shortterm_trendtype"]
elif not trendtype in ["simple","sophisticated"]:
raise TypeError("Input has to be an integer.")
if not var in [self.price_var,self.vol_var]:
raise TypeError("Input has to be price or volume column.")
for coin_name in self.coindata.keys():
# The trend variable uses weighted sums of historic price changes.
# This sum is based on the length of the used time window k.
# For calculation we adapt Y steps:
# 1) Prepare some variables used in the later loop
# 2) Create a list of tuples for selecting elements of the price vector
# .. that later used to determine *which* historic prices changes are
# .. part of the summand
# 3) A nested loop going through every period and within every period
# .. trough every tuple to select k summands to include for the trend
# .. value for the respective period. (Caginalp 2014, p.10)
# 1) Some preparation
if var == self.price_var:
basevar = self.coindata[coin_name][self.price_var]
elif var == self.vol_var:
basevar = self.coindata[coin_name][self.vol_var]
else:
raise TypeError("This should never trigger.")
norm_factor = 1/sum([np.exp(scalingvar*i) for i in range(1,wlength+1)])
# CASES
if trendtype == "simple":
# 2) Selection tuples of indeces for historic price to be part of sum per period
tuple_selections_over_time = self._make_tuples(windowlength = wlength,
series = basevar,
trendtype = "simple")
# 3) Loop to concatenate weighted sums of price changes per period
trend = list()
for tuple_selection_for_period in tuple_selections_over_time:
cond_sufficient_obs = len(tuple_selection_for_period) >= minobs
cond_no_zeros = all([False if basevar[tupl[1]] == 0 else True
for tupl in tuple_selection_for_period])
if cond_sufficient_obs or cond_no_zeros:
sum_for_period = 0
for k, tupl in enumerate(tuple_selection_for_period):
price_updated = basevar[tupl[0]] #"larger" time if it was timestamp
price_anchor = basevar[tupl[1]] #"smaller" time if it was timestamp
weight = np.exp(scalingvar*(k+1))# "+1" as enumerate starts with 0
sum_for_period += weight * (
(price_updated-price_anchor) / price_anchor
)
trend.append(norm_factor*sum_for_period)
else:
# otherwise trend is NA fo this period
trend.append(np.nan)
elif trendtype == "sophisticated":
# 2) Selection tuples of indeces for historic price to be part of sum per period
tuple_selections_over_time = self._make_tuples(windowlength = wlength,
series = basevar,
trendtype = "sophisticated")
# 3) Loop to concatenate weighted sums of price changes per period
trend = list()
for tuple_selection_for_period in tuple_selections_over_time:
flag_first_tuple = True
cond_sufficient_obs = len(tuple_selection_for_period) >= minobs
cond_no_zeros = all([False if basevar[tupl[1]] == 0 else True
for tupl in tuple_selection_for_period])
if cond_sufficient_obs or cond_no_zeros:
sum_for_period = 0
for k, tupl in enumerate(tuple_selection_for_period):
if flag_first_tuple:
price_updated = basevar[tupl[0]] #"larger" time if it was timestamp
price_anchor = basevar[tupl[1]] #"smaller" time if it was timestamp
subtrahend_left = (price_updated-price_anchor) / price_anchor
flag_first_tuple = False
else:
price_updated = basevar[tupl[0]] #"larger" time if it was timestamp
price_anchor = basevar[tupl[1]] #"smaller" time if it was timestamp
weight = np.exp(scalingvar*(k))# "+1" as enumerate starts with 0 but -1 as one tuple for subtrahend_left
sum_for_period += weight * (
(price_updated-price_anchor) / price_anchor
)
subtrahend_right_unnormalized = sum_for_period
trend.append(subtrahend_left - norm_factor*subtrahend_right_unnormalized)
else:
# otherwise trend is NA fo this period
trend.append(np.nan)
trend = { 'V_trend_'+ var +'_st_'+ str(wlength): trend}
trend = pd.DataFrame(trend)
self.coindata[coin_name] = pd.concat([self.coindata[coin_name],
trend], axis=1)
print("|---| Added shorterm trend (wlength = "
+ str(wlength)
+") < "+var+" > for: |---| "
+ coin_name)
def add_trend_longterm(self,
var,
wlength = "from_config",
periodiz_mult = "from_config",
ols_minobs = "from_config"):
# Input either from config file or specified in arguments
if wlength == "from_config":
wlength = self.config["dataloading"]["trend_longterm_windowlength"]
elif not type(wlength) == int:
raise TypeError("Input has to be an integer.")
if periodiz_mult == "from_config":
periodiz_mult = self.config["dataloading"]["trend_longterm_periodization_multiplier"]
elif not type(periodiz_mult) == int:
raise TypeError("Input has to be an integer.")
if ols_minobs == "from_config":
ols_minobs = self.config["dataloading"]["trend_longterm_ols_minobs"]
elif not type(ols_minobs) == int:
raise TypeError("Input has to be an integer.")
if not var in [self.price_var,self.vol_var]:
raise TypeError("Input has to be price or volume column.")
for coin_name in self.coindata.keys():
if var == self.price_var:
basevar = self.coindata[coin_name][self.price_var]
elif var == self.vol_var:
basevar = self.coindata[coin_name][self.vol_var]
# Inputs required for longterm trend
basevar_changes = basevar / basevar.shift(-1) - 1
basevar_changes.index = self.coindata[coin_name]["time"]
# Loop over timeseries to apply rolling functionality (OLS here)
trend = list()
for i in range(len(basevar_changes)):
# Determine cut to apply functionality to
index_from = i
index_to = wlength + i
# Extract data for regression
regressiondata_endog_var = basevar_changes.shift(-1)[index_from:index_to]
regressiondata_exog_var = basevar_changes[index_from:index_to]
regressiondata = pd.concat([regressiondata_endog_var,regressiondata_exog_var],
axis = 1)
regressiondata.columns = ["basevar_changes","lagged_basevar_changes"]
# Performance of regression on data extract if sufficient observ.
cond_nans_data_exog = regressiondata_exog_var.isna().sum()
cond_nans_data_endog = regressiondata_endog_var.isna().sum()
cond_inf_data_exog = np.isinf(regressiondata_exog_var).any()
cond_inf_data_endog = np.isinf(regressiondata_endog_var).any()
cond_to_little_observatios = regressiondata.shape[0] < ols_minobs
if (cond_nans_data_endog or
cond_nans_data_exog or
cond_inf_data_endog or
cond_inf_data_exog or
cond_to_little_observatios):
slope = np.nan
else:
slope = sm.ols(formula = "basevar_changes ~ lagged_basevar_changes",
data = regressiondata,
missing = 'drop').fit().params[1]
slope_periodized = slope * periodiz_mult
trend.append(slope_periodized)
trend = { 'V_trend_'+ var +'_lt_'+ str(wlength): trend}
trend = pd.DataFrame(trend)
self.coindata[coin_name] = pd.concat([self.coindata[coin_name],
trend], axis=1)
print("|---| Added longterm trend (wlength = "
+ str(wlength)
+") < "+ var +" > for: |---| "
+ coin_name)
# coin_name = "dai"
# scalingvar = 0.25
# minobs = 0
# wlength = 3
# import numpy as np
# var = "prices"
# for coin_name in d.coindata.keys():
# # The trend variable uses weighted sums of historic price changes.
# # This sum is based on the length of the used time window k.
# # For calculation we adapt Y steps:
# # 1) Prepare some variables used in the later loop
# # 2) Create a list of tuples for selecting elements of the price vector
# # .. that later used to determine *which* historic prices changes are
# # .. part of the summand
# # 3) A nested loop going through every period and within every period
# # .. trough every tuple to select k summands to include for the trend
# # .. value for the respective period. (Caginalp 2014, p.10)
# # 1) Some preparation
# if var == d.price_var:
# basevar = d.coindata[coin_name][d.price_var]
# elif var == d.vol_var:
# basevar = d.coindata[coin_name][d.vol_var]
# else:
# raise TypeError("This should never trigger.")
# norm_factor = 1/sum([np.exp(scalingvar*i) for i in range(1,wlength+1)])
# # 2) Selection tuples of indeces for historic price to be part of sum per period
# tuple_selections_over_time = d._make_tuples(windowlength = wlength, series = basevar)
# # 3) Loop to concatenate weighted sums of price changes per period
# trend = list()
# for tuple_selection_for_period in tuple_selections_over_time:
# sum_for_period = 0
# cond_sufficient_obs = len(tuple_selection_for_period) >= minobs
# if cond_sufficient_obs:
# for k, tupl in enumerate(tuple_selection_for_period):
# price_updated = basevar[tupl[0]] #"larger" time if it was timestamp
# price_anchor = basevar[tupl[1]] #"smaller" time if it was timestamp
# weight = np.exp(-scalingvar*(k+1))# "+1" as enumerate starts with 0
# if price_anchor == 0:
# sum_for_period = np.nan
# break
# sum_for_period += weight * (
# (price_updated-price_anchor) / price_anchor
# )
# trend.append(norm_factor*sum_for_period)
# else:
# # otherwise trend is NA fo rhtis period
# trend.append(np.nan)
# trend = { 'V_trend_'+ var +'_st_'+ str(wlength): trend}
# trend = pd.DataFrame(trend)
# d.coindata[coin_name] = pd.concat([d.coindata[coin_name],
# trend], axis=1)
# print("|---| Added shorterm trend (wlength = "
# + str(wlength)
# +") < "+var+" > for: |---| "
# + coin_name)
# sum_for_period = 0
# cond_sufficient_obs = len(tuple_selection_for_period) >= minobs
# for k, tupl in enumerate(tuple_selection_for_period):
# price_updated = basevar[tupl[0]] #"larger" time if it was timestamp
# price_anchor = basevar[tupl[1]] #"smaller" time if it was timestamp
# weight = np.exp(-scalingvar*k)
# if price_anchor == 0:
# sum_for_period = np.nan
# break
# sum_for_period += weight * (
# (price_updated-price_anchor) / price_anchor
# )
# trend.append(norm_factor*sum_for_period)
#################################################################################
# coin_name = "dai"
# scalingvar = 0.25
# minobs = 0
# wlength = 31
# import numpy as np
# var = "prices"
# ols_minobs = 20
# import statsmodels.formula.api as sm
# periodiz_mult = 31
# if var == d.price_var:
# basevar = d.coindata[coin_name][d.price_var]
# elif var == d.vol_var:
# basevar = d.coindata[coin_name][d.vol_var]
# # Inputs required for longterm trend
# basevar_changes = basevar / basevar.shift(-1) - 1
# basevar_changes.index = d.coindata[coin_name]["time"]
# # Loop over timeseries to apply rolling functionality (OLS here)
# trend = list()
# for i in range(len(basevar_changes)):
# # Determine cut to apply functionality to
# index_from = i
# index_to = wlength + i
# print("from:{}, to:{}".format(index_from, index_to))
# # Extract data for regression
# regressiondata_endog_var = basevar_changes.shift(-1)[index_from:index_to]
# regressiondata_exog_var = basevar_changes[index_from:index_to]
# regressiondata = pd.concat([regressiondata_endog_var,regressiondata_exog_var],
# axis = 1)
# regressiondata.columns = ["basevar_changes","lagged_basevar_changes"]
# # Performance of regression on data extract if sufficient observ.
# cond_nans_data_exog = regressiondata_exog_var.isna().sum()
# cond_nans_data_endog = regressiondata_endog_var.isna().sum()
# cond_inf_data_exog = np.isinf(regressiondata_exog_var).any()
# cond_inf_data_endog = np.isinf(regressiondata_endog_var).any()
# cond_to_little_observatios = regressiondata.shape[0] < ols_minobs
# if (cond_nans_data_endog or
# cond_nans_data_exog or
# cond_inf_data_endog or
# cond_inf_data_exog or
# cond_to_little_observatios):
# slope = np.nan
# else:
# slope = sm.ols(formula = "basevar_changes ~ lagged_basevar_changes",
# data = regressiondata,
# missing = 'drop').fit().params[1]
# slope_periodized = slope * periodiz_mult
# print("S:{}, SP:{}".format(slope, slope_periodized))
# trend.append(slope_periodized)