-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathvae_basic_test.py
248 lines (230 loc) · 8.57 KB
/
vae_basic_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from __future__ import absolute_import, division, print_function
import os
import shutil
from functools import partial
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_probability as tfp
from odin import visual as vs
from odin.bay.vi import RVconf, get_vae
from odin.fuel import MNIST, BinarizedMNIST, FashionMNIST, dSprites
from odin.ml import fast_umap
from odin.training import (Trainer, get_current_trainer, get_output_dir,
run_hydra)
from odin.utils import ArgController
from tensorflow.python import keras
from tensorflow.python.keras import layers
tfpl = tfp.layers
tfd = tfp.distributions
tf.config.experimental.set_memory_growth(
tf.config.list_physical_devices('GPU')[0], True)
tf.debugging.set_log_device_placement(False)
tf.autograph.set_verbosity(0)
tf.random.set_seed(1)
np.random.seed(1)
# ===========================================================================
# configs
# ===========================================================================
learning_rate = 1e-3
batch_size = 32
encoded_size = 16
base_depth = 32
max_iter = 50000
SAVE_PATH = "/tmp/vae_basic"
CONFIG = \
"""
ds: mnist
model:
beta: 1
"""
# ===========================================================================
# load data
# ===========================================================================
# he_uniform is better for leaky_relu
conv2D = partial(layers.Conv2D,
padding='same',
kernel_initializer='he_uniform',
activation=tf.nn.leaky_relu)
deconv2D = partial(layers.Conv2DTranspose,
padding='same',
kernel_initializer='he_uniform',
activation=tf.nn.leaky_relu)
def create_encoder(input_shape):
return [
layers.InputLayer(input_shape=input_shape),
conv2D(base_depth, 5, strides=1, name='Encoder0'),
conv2D(base_depth, 5, strides=2, name='Encoder1'),
conv2D(2 * base_depth, 5, strides=1, name='Encoder2'),
conv2D(2 * base_depth, 5, strides=2, name='Encoder3'),
conv2D(4 * encoded_size, 7, strides=1, padding='valid', name='Encoder4'),
layers.Flatten(),
layers.Dense(tfpl.MultivariateNormalTriL.params_size(encoded_size),
activation=None,
name='Encoder5')
]
def create_decoder():
return [
layers.InputLayer(input_shape=[encoded_size]),
layers.Reshape([1, 1, encoded_size]),
deconv2D(2 * base_depth, 7, strides=1, padding='valid', name='Decoder0'),
deconv2D(2 * base_depth, 5, strides=1, name='Decoder1'),
deconv2D(2 * base_depth, 5, strides=2, name='Decoder2'),
deconv2D(base_depth, 5, strides=1, name='Decoder3'),
deconv2D(base_depth, 5, strides=2, name='Decoder4'),
deconv2D(base_depth, 5, strides=1, name='Decoder5'),
conv2D(1, 5, strides=1, activation=None, name='Decoder6'),
layers.Flatten()
]
# ===========================================================================
# Main
# ===========================================================================
@run_hydra(output_dir=SAVE_PATH)
def main(cfg: dict):
assert cfg.vae is not None and cfg.beta is not None, \
f'Invalid arguments: {cfg}'
if cfg.ds == 'bmnist':
ds = BinarizedMNIST()
elif cfg.ds == 'mnist':
ds = MNIST()
elif cfg.ds == 'fmnist':
ds = FashionMNIST()
else:
raise NotImplementedError(f'No support for dataset with name={cfg.ds}')
input_shape = ds.shape
train = ds.create_dataset(partition='train', batch_size=batch_size)
valid = ds.create_dataset(partition='valid', batch_size=batch_size)
x_test, y_test = ds.numpy(partition='test',
batch_size=batch_size,
shuffle=1000,
label_percent=1.0)
y_test = ds.labels[np.argmax(y_test, axis=-1)]
## create the prior and the network
pz = tfd.Sample(tfd.Normal(loc=0, scale=1), sample_shape=encoded_size)
z_samples = pz.sample(16)
encoder = create_encoder(input_shape)
decoder = create_decoder()
## create the model
# tfp model API
if cfg.vae == 'tfp':
encoder.append(tfpl.MultivariateNormalTriL(encoded_size))
encoder = keras.Sequential(encoder, name='encoder')
decoder.append(tfpl.IndependentBernoulli(input_shape))
decoder = keras.Sequential(decoder, name="decoder")
vae = keras.Model(inputs=encoder.inputs,
outputs=[decoder(encoder.outputs[0]), encoder.outputs[0]],
name='tfp_vae')
# odin model API
else:
encoder = keras.Sequential(encoder, name='encoder')
decoder = keras.Sequential(decoder, name="decoder")
vae = get_vae(cfg.vae)(
encoder=encoder,
decoder=decoder,
# latents=tfpl.MultivariateNormalTriL(encoded_size),
latents=RVconf(event_shape=(encoded_size,),
posterior='mvntril',
projection=False,
name="latents"),
observation=RVconf(event_shape=input_shape,
posterior="bernoulli",
projection=False,
name="image"),
name=f'odin_{cfg.vae}')
### training the model
vae.build(input_shape=(None,) + input_shape)
params = vae.trainable_variables
opt = tf.optimizers.Adam(learning_rate=learning_rate)
def optimize(x, training=None):
with tf.GradientTape(watch_accessed_variables=False) as tape:
if training:
tape.watch(params)
px, qz = vae(x, training=training)
z = qz._value()
kl = tf.reduce_mean(qz.log_prob(z) - pz.log_prob(z), axis=-1)
nll = -tf.reduce_mean(px.log_prob(x), axis=-1)
loss = nll + cfg.beta * kl
if training:
grads = tape.gradient(loss, params)
grads_params = [(g, p) for g, p in zip(grads, params) if g is not None]
opt.apply_gradients(grads_params)
grads = {f'_grad/{p.name}': tf.linalg.norm(g) for p, g in grads_params}
else:
grads = dict()
return loss, dict(nll=nll, kl=kl, **grads)
def callback():
trainer = get_current_trainer()
x, y = x_test[:1000], y_test[:1000]
px, qz = vae(x, training=False)
# latents
qz_mean = tf.reduce_mean(qz.mean(), axis=0)
qz_std = tf.reduce_mean(qz.stddev(), axis=0)
w = tf.reduce_sum(decoder.trainable_variables[0], axis=(0, 1, 2))
# plot the latents and its weights
fig = plt.figure(figsize=(6, 4), dpi=200)
ax = plt.gca()
l1 = ax.plot(qz_mean,
label='mean',
linewidth=1.0,
linestyle='--',
marker='o',
markersize=4,
color='r',
alpha=0.5)
l2 = ax.plot(qz_std,
label='std',
linewidth=1.0,
linestyle='--',
marker='o',
markersize=4,
color='g',
alpha=0.5)
ax1 = ax.twinx()
l3 = ax1.plot(w,
label='weight',
linewidth=1.0,
linestyle='--',
marker='o',
markersize=4,
color='b',
alpha=0.5)
lines = l1 + l2 + l3
labs = [l.get_label() for l in lines]
ax.grid(True)
ax.legend(lines, labs)
img_qz = vs.plot_to_image(fig)
# reconstruction
fig = plt.figure(figsize=(5, 5), dpi=120)
vs.plot_images(np.squeeze(px.mean().numpy()[:25], axis=-1), grids=(5, 5))
img_res = vs.plot_to_image(fig)
# latents
fig = plt.figure(figsize=(5, 5), dpi=200)
z = fast_umap(qz.mean().numpy())
vs.plot_scatter(z, color=y, size=12.0, alpha=0.4)
img_umap = vs.plot_to_image(fig)
# gradients
grads = [(k, v) for k, v in trainer.last_train_metrics.items() if '_grad/' in k]
encoder_grad = sum(v for k, v in grads if 'Encoder' in k)
decoder_grad = sum(v for k, v in grads if 'Decoder' in k)
return dict(reconstruct=img_res,
umap=img_umap,
latents=img_qz,
qz_mean=qz_mean,
qz_std=qz_std,
w_decoder=w,
llk_test=tf.reduce_mean(px.log_prob(x)),
encoder_grad=encoder_grad,
decoder_grad=decoder_grad)
### Create trainer and fit
trainer = Trainer(logdir=get_output_dir())
trainer.fit(train_ds=train.repeat(-1),
optimize=optimize,
valid_ds=valid,
max_iter=max_iter,
compile_graph=True,
log_tag=f'{cfg.vae}_{cfg.beta}',
on_valid_end=callback,
valid_freq=1000)
if __name__ == "__main__":
main(CONFIG)