-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathauxiliary_vae.py
259 lines (246 loc) · 10.6 KB
/
auxiliary_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from typing import Optional
import numpy as np
import tensorflow as tf
from odin import backend as bk
from odin.bay.helpers import coercible_tensor
from odin.bay.layers import DistributionNetwork
from odin.bay.random_variable import RVconf
from odin.bay.vi.autoencoder.conditional_vae import (ConditionalM2VAE,
prepare_ssl_inputs)
from odin.bay.vi.autoencoder.variational_autoencoder import (LayerCreator,
_parse_layers)
from odin.networks import NetConf, get_embedding
from odin.utils import as_tuple
from tensorflow.python.keras.layers import BatchNormalization, Dense, Dropout
from tensorflow_probability.python.distributions import (Distribution,
VectorDeterministic)
from typing_extensions import Literal
class auxiliaryVAE(ConditionalM2VAE):
"""
The inference model:
```
q(xayz)=q(z|axy)q(y|xa)q(a|x)
```
The generative model:
```
# If skip_connection=False
p(xayz) = p(x|yz)p(a|yz)p(y)p(z)
# If skip_connection=True
p(xayz) = p(x|ayz)p(a|yz)p(y)p(z)
```
The key point of the ADGM is that the auxiliary unit a introduce a
latent feature extractor to the inference model giving a richer mapping
between `x` and `y`.
References
------------
Maaløe, L., Sønderby, C. K., Sønderby, S. K. & Winther, O. Auxiliary
Deep Generative Models. arXiv:1602.05473 [cs, stat] (2016).
Lucas, T. & Verbeek, J. Auxiliary Guided Autoregressive Variational
Autoencoders. arXiv:1711.11479 [cs] (2017).
"""
def __init__(
self,
n_classes: int = 10,
observation=RVconf((28, 28, 1),
'bernoulli',
projection=True,
name='image'),
latents: RVconf = RVconf(64, 'mvndiag', projection=True, name='latents'),
classifier: LayerCreator = NetConf([128, 128],
flatten_inputs=True,
name='classifier'),
auxiliary: RVconf = RVconf(64,
'mvndiag',
projection=True,
name='auxiliary'),
encoder_a: LayerCreator = NetConf([512, 512],
flatten_inputs=True,
name='encoder_a'),
decoder_a: LayerCreator = NetConf([512, 512],
flatten_inputs=True,
name='decoder_a'),
encoder: LayerCreator = NetConf([512, 512],
flatten_inputs=True,
name='encoder'),
decoder: LayerCreator = NetConf([512, 512],
flatten_inputs=True,
name='decoder'),
axy_to_qz: LayerCreator = NetConf([128, 128], name='axy_to_qz'),
azy_to_px: LayerCreator = NetConf([128, 128], name='azy_to_px'),
embedding_dim: int = 128,
embedding_method: Literal['repetition', 'projection', 'dictionary',
'sequential', 'identity'] = 'sequential',
batchnorm: bool = False,
dropout: float = 0.,
skip_connection: bool = True,
alpha: float = 1.0,
beta: float = 1.0,
temperature: float = 10.,
marginalize: bool = True,
name='AuxiliaryVAE',
**kwargs,
):
super().__init__(n_classes=n_classes,
observation=observation,
latents=latents,
classifier=classifier,
encoder=encoder,
decoder=decoder,
xy_to_qz=axy_to_qz,
zy_to_px=azy_to_px,
embedding_dim=embedding_dim,
embedding_method=embedding_method,
batchnorm=batchnorm,
dropout=dropout,
alpha=alpha,
beta=beta,
temperature=temperature,
marginalize=marginalize,
name=name,
**kwargs)
self.skip_connection = bool(skip_connection)
self.batchnorm = bool(batchnorm)
self.qa_dist = auxiliary.create_posterior(name='qa_x')
self.pa_dist = auxiliary.create_posterior(name='pa_xz')
self.encoder_a = _parse_layers(encoder_a)
self.decoder_a = _parse_layers(decoder_a)
# labels connections
self.x_to_qy = Dense(units=self.embedding_dim, activation='linear')
self.a_to_qy = Dense(units=self.embedding_dim, activation='linear')
# auxiliary connections
self.a_to_qz = Dense(units=self.embedding_dim, activation='linear')
self.a_to_px = Dense(units=self.embedding_dim, activation='linear')
# for p(a|yz)
self.y_to_pa = Dense(units=self.embedding_dim, activation='linear')
self.z_to_pa = Dense(units=self.embedding_dim, activation='linear')
# batchnorm and dropout
if self.batchnorm:
self.qy_ax_norm = BatchNormalization(axis=-1, name='qy_ax_norm')
self.pa_zy_norm = BatchNormalization(axis=-1, name='pa_zy_norm')
if 0.0 < self.dropout < 1.0:
self.qy_ax_drop = Dropout(rate=self.dropout, name='qy_ax_drop')
self.pa_zy_drop = Dropout(axis=-1, name='pa_zy_drop')
def classify(self,
inputs,
training=False,
qa_x: Optional[Distribution] = None) -> Distribution:
"""Return the prediction of labels"""
# prepare x
if isinstance(inputs, (tuple, list)):
inputs = inputs[0] # only support a single inputs Tensor
h_x = self.x_to_qy(bk.flatten(inputs, n_outdim=2), training=training)
# prepare a
if qa_x is None:
qa_x = self.qa_dist(self.encoder_a(inputs, training=training),
training=training)
h_a = self.a_to_qy(qa_x, training=training)
# final combination
h_ax = h_a + h_x
if self.batchnorm:
h_ax = self.qy_ax_norm(h_ax, training=training)
if 0.0 < self.dropout < 1.0:
h_ax = self.qy_ax_drop(h_ax, training=training)
h = self.classifier(h_ax, training=training)
return self.labels(h, training=training)
def encode(self, inputs, training=None, mask=None):
X, y, mask = prepare_ssl_inputs(inputs, mask=mask, n_unsupervised_inputs=1)
X = X[0] # only accept single inputs now
## encode normally
h_x = self.encoder(X, training=training, mask=mask)
h_x = bk.flatten(h_x, n_outdim=2)
## prepare the auxiliary
qa_x = self.qa_dist(self.encoder_a(X, training=training),
training=training,
mask=mask)
## prepare the label embedding
qy_ax = self.classify(X, training=training, qa_x=qa_x)
## combine into q(z|axy)
h_x = self.x_to_qz(h_x, training=training)
h_a = self.a_to_qz(qa_x, training=training)
h_y = self.y_to_qz(qy_ax, training=training)
h_axy = h_x + h_y + h_a
if self.batchnorm:
h_axy = self.qz_xy_norm(h_axy, training=training)
if 0.0 < self.dropout < 1.0:
h_axy = self.qz_xy_drop(h_axy, training=training)
# conditional embedding y
h_axy = self.xy_to_qz_net(h_axy, training=training, mask=mask)
qz_axy = self.latents(h_axy, training=training, mask=mask)
return (qz_axy, qa_x, qy_ax)
def decode(self, latents, training=None, mask=None):
# skip_connection=False: p(xayz) = p(x|yz)p(a|yz)p(y)p(z)
# skip_connection=True: p(xayz) = p(x|ayz)p(a|yz)p(y)p(z)
qz_axy, qa_x, qy_ax = latents
h_z = self.z_to_px(qz_axy, training=training)
h_y = self.y_to_px(qy_ax, training=training)
# skip connection to auxiliary variable
if self.skip_connection:
h_a = self.a_to_px(qa_x, training=training)
else:
h_a = 0.
# combining all latent states
h_ = h_z + h_y + h_a
if self.batchnorm:
h_ = self.px_zy_norm(h_, training=training)
if 0.0 < self.dropout < 1.0:
h_ = self.px_zy_drop(h_, training=training)
h_ = self.zy_to_px_net(h_, training=training, mask=mask)
px_ayz = super(ConditionalM2VAE, self).decode(h_,
training=training,
mask=mask)
## generate the auxiliary variable
h_y = self.y_to_pa(qy_ax, training=training)
h_z = self.z_to_pa(qz_axy, training=training)
h_ = h_y + h_z
if self.batchnorm:
h_ = self.pa_zy_norm(h_, training=training)
if 0.0 < self.dropout < 1.0:
h_ = self.pa_zy_drop(h_, training=training)
h_ = self.decoder_a(h_, training=training)
pa_zy = self.pa_dist(h_, training=training, mask=mask)
return px_ayz, pa_zy
def elbo_components(self, inputs, training=None, mask=None):
X_u, y_u, X_l, y_l = self._prepare_elbo(inputs,
training=training,
mask=mask)
### for unlabelled data (assumed always available)
P_u, Q_u, llk_u, kl_u = self._unlabelled_loss(X_u, y_u, training)
qa_x = Q_u[1]
pa_zy = P_u[1]
a = tf.convert_to_tensor(qa_x)
kl_qp_a = qa_x.log_prob(a) - pa_zy.log_prob(a)
if self.free_bits is not None:
kl_qp_a = tf.maximum(kl_qp_a, self.free_bits)
kl_u['kl_aux_u'] = kl_qp_a
### for labelled data, add the discriminative objective
P_l, Q_l, llk_l, kl_l = self._labelled_loss(X_l, y_l, training)
if P_l is not None:
is_ss = tf.shape(y_l)[0] > 0
qa_x = Q_l[1]
pa_zy = P_l[1]
a = tf.convert_to_tensor(qa_x)
kl_qp_a = qa_x.log_prob(a) - pa_zy.log_prob(a)
if self.free_bits is not None:
kl_qp_a = tf.maximum(kl_qp_a, self.free_bits)
kl_l['kl_aux_l'] = tf.cond(is_ss, lambda: kl_qp_a, lambda: 0.)
# l_qa_x, l_qa_x_mu, l_qa_x_logvar = stochastic_layer(l_qa_x)
# l_pa_zy, l_pa_zy_mu, l_pa_zy_logvar = stochastic_layer(l_pa_zy)
# l_log_pa = log_prob(self.l_qa, self.l_pa_mu, self.l_pa_logvar)
# l_log_qa = log_prob(self.l_qa, self.l_qa_mu, self.l_qa_logvar)
# lb = log_px + log_py + log_pz + log_pa - log_qa - log_qz
### merge everything
llk = {k: tf.reduce_mean(v) for k, v in dict(**llk_u, **llk_l).items()}
kl = {k: tf.reduce_mean(v) for k, v in dict(**kl_u, **kl_l).items()}
return llk, kl
@classmethod
def is_semi_supervised(cls) -> bool:
return True
def __str__(self):
s = super().__str__()
s += '\nAuxiliary: '
s += f'\n Skip-connection:{self.skip_connection}'
s += '\n '
s += '\n '.join(str(self.encoder_a).split('\n'))
s += '\n '
s += '\n '.join(str(self.decoder_a).split('\n'))
return s