-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathconditional_vae.py
757 lines (701 loc) · 28.8 KB
/
conditional_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
from __future__ import absolute_import, division, print_function
from typing import List, Sequence, Union, Callable, Any
import warnings
import numpy as np
import tensorflow as tf
from tensorflow.python import keras
from tensorflow.python.keras.layers import BatchNormalization, Dense, Dropout, \
Concatenate, Flatten
from tensorflow_probability.python.distributions import (Distribution, Normal,
OneHotCategorical)
from tensorflow_probability.python.layers import IndependentNormal
from typing_extensions import Literal
from tensorflow_probability.python.internal import prefer_static as ps
from odin import backend as bk
from odin.backend import TensorType
from odin.bay.random_variable import RVconf
from odin.bay.vi.autoencoder.beta_vae import BetaVAE, BetaGammaVAE
from odin.bay.vi.autoencoder.variational_autoencoder import (LayerCreator,
_parse_layers)
from odin.bay.vi.utils import (marginalize_categorical_labels,
prepare_ssl_inputs, split_ssl_inputs)
from odin.networks import NetConf
from odin.networks.conditional_embedding import get_embedding
from odin.utils import one_hot
from tensorflow_probability.python.layers.distribution_layer import \
DistributionLambda
from tensorflow_probability.python.distributions import VectorDeterministic
__all__ = [
'M2VAE',
'ConditionalM2VAE',
'reparamsM3VAE',
]
from odin.utils import as_tuple
def _prepare_elbo(self, inputs, training=None, mask=None):
X, y, mask = prepare_ssl_inputs(inputs, mask=mask, n_unsupervised_inputs=1)
X_u, X_l, y_l = split_ssl_inputs(X, y, mask)
# for simplication only 1 inputs and 1 labels are supported
X_u, X_l = X_u[0], X_l[0]
if len(y_l) > 0:
y_l = y_l[0]
else:
y_l = None
# marginalize the unsupervised data
if self.marginalize:
X_u, y_u = marginalize_categorical_labels(
X=X_u,
n_classes=self.n_classes,
dtype=self.dtype,
)
else:
y_u = None
return X_u, y_u, X_l, y_l
# ===========================================================================
# main classes
# ===========================================================================
class M2VAE(BetaGammaVAE):
def __init__(
self,
labels: RVconf = RVconf(10, 'relaxedonehot', name='digits'),
classifier: Sequence[int] = (1024, 1024, 1024, 1024),
activation: Union[str, Callable[[Any], tf.Tensor]] = 'relu',
alpha: float = 10.,
**kwargs,
):
super().__init__(**kwargs)
self.alpha = float(alpha)
## the networks
# TODO: force reparams here
self.labels = _parse_layers(labels)
self.n_classes = int(np.prod(labels.event_shape))
self.classifier = NetConf(classifier,
flatten_inputs=True,
activation=activation,
name='Classifier').create_network()
self.xy_to_qz_net = NetConf([128, 128], activation=activation,
name='xy_to_qz').create_network()
self.zy_to_px_net = NetConf([128, 128], activation=activation,
name='zy_to_px').create_network()
## check the labels distribution
self.n_classes = int(np.prod(labels.event_shape))
# q(z|xy)
self.y_to_qz = Dense(128, activation='linear', name='y_to_qz')
self.x_to_qz = Dense(128, activation='linear', name='x_to_qz')
# p(x|zy)
self.y_to_px = Dense(128, activation='linear', name='z_to_px')
self.z_to_px = Dense(128, activation='linear', name='z_to_px')
self.concat = Concatenate(axis=-1)
self.flatten = Flatten()
self.onehot_dist = DistributionLambda(lambda p: VectorDeterministic(p))
# classes
if self.n_classes in (10, 3, 4):
self.classes = [self.n_classes]
elif self.n_classes == (15 + 8 + 4 + 30): # dsprites
self.classes = [15, 8, 4, 10, 10, 10]
elif self.n_classes == (40 + 6 + 3 + 32 + 32): # shapes3d
self.classes = [40, 6, 3, 32, 32]
else:
raise NotImplementedError
def classify(self,
inputs: TensorType,
training: bool = False) -> Distribution:
"""Return the prediction of labels"""
if isinstance(inputs, (tuple, list)) and len(inputs) == 1:
inputs = inputs[0]
h = self.classifier(inputs, training=training)
return self.labels(h, training=training)
def sample_labels(self,
sample_shape: List[int] = (),
seed: int = 1) -> tf.Tensor:
"""Sample labels from prior of the labels distribution"""
return bk.atleast_2d(
self.labels.prior.sample(sample_shape=sample_shape, seed=seed))
def sample_prior(self, n: int = 1, seed: int = 1, **kwargs) -> tf.Tensor:
classes = self.classes
y = np.concatenate([one_hot(np.mod(np.arange(n), i), i) for i in classes],
-1)
z = super(M2VAE, self).sample_prior(n=n, seed=seed, **kwargs)
z.qy_x = y
return z
def encode(self, inputs, training=None, mask=None, **kwargs):
X, y, mask = prepare_ssl_inputs(inputs, mask=mask, n_unsupervised_inputs=1)
X = X[0] # only accept single inputs now
# prepare the label embedding
qy_x = self.classify(X, training=training)
h_y = self.y_to_qz(qy_x, training=training)
# encode normally
h_x = self.encoder(X, training=training, mask=mask)
h_x = self.flatten(h_x)
h_x = self.x_to_qz(h_x, training=training)
# combine into q(z|xy)
h_xy = self.concat([h_x, h_y])
# conditional embedding y
h_xy = self.xy_to_qz_net(h_xy, training=training, mask=mask)
qz_xy = self.latents(h_xy, training=training, mask=mask)
qz_xy.qy_x = qy_x
return qz_xy
def decode(self, latents, training=None, mask=None, **kwargs):
qz_xy = latents
qy_x = qz_xy.qy_x
h_z = self.z_to_px(qz_xy, training=training)
h_y = self.y_to_px(qy_x, training=training)
h_zy = self.concat([h_z, h_y])
h_zy = self.zy_to_px_net(h_zy, training=training, mask=mask)
px_z = super().decode(h_zy, training=training, mask=mask)
if not isinstance(qy_x, Distribution):
qy_x = self.onehot_dist(qy_x)
return as_tuple(px_z) + (qy_x,)
##################### Helper methods for ELBO
def _unlabelled_loss(self, x_u, training):
llk_u, kl_u = super().elbo_components(inputs=x_u, training=training)
(px, qy), qz = self.last_outputs
# Note: qy_x is always expected to be the last value
probs = qy.probs_parameter()
# weighed the loss by qy_x
llk_u = {
k + '_u': tf.reduce_sum(probs * tf.expand_dims(v, axis=-1), axis=-1)
for k, v in llk_u.items()
}
kl_u = {
k + '_u': tf.reduce_sum(tf.expand_dims(probs, axis=0) *
tf.expand_dims(v, axis=-1),
axis=-1) for k, v in kl_u.items()
}
# the entropy
entropy = -tf.reduce_sum(
tf.math.multiply_no_nan(tf.math.log(probs + 1e-6), probs),
axis=-1)
llk_u['H_qy'] = entropy
return llk_u, kl_u
def _labelled_loss(self, x_l, y_l, training):
llk_l, kl_l = super().elbo_components(inputs=x_l, training=training)
(px, qy), qz = self.last_outputs
# we need this condition since NaNs are returned if y_l.shape[0] == 0
llk_l = {k + '_l': v for k, v in llk_l.items()}
kl_l = {k + '_l': v for k, v in kl_l.items()}
llk_l['llk_qy'] = self.alpha * qy.log_prob(y_l)
return llk_l, kl_l
def elbo_components(self, inputs, training=None, mask=None):
inputs = as_tuple(inputs)
x_u, x_s, y_s = None, None, None
if len(inputs) == 1:
x_u = inputs
elif len(inputs) == 2:
x_s, y_s = inputs
else:
x_u, x_s, y_s = inputs
### for unlabelled data (assumed always available)
llk_u, kl_u = {}, {}
if x_u is not None:
llk_u, kl_u = self._unlabelled_loss(x_u, training)
### for labelled data, add the discriminative objective
llk_s, kl_s = {}, {}
if x_s is not None:
llk_s, kl_s = self._labelled_loss(x_s, y_s, training)
### merge everything
llk = {k: tf.reduce_mean(v) for k, v in dict(**llk_u, **llk_s).items()}
kl = {k: tf.reduce_mean(v) for k, v in dict(**kl_u, **kl_s).items()}
return llk, kl
@classmethod
def is_semi_supervised(cls) -> bool:
return True
def __str__(self):
text = super().__str__()
text += f"\nEmbedding:"
text += "\nClassifier:\n "
text += '\n '.join(str(self.classifier).split('\n'))
text += f"\n {self.labels}"
text += "\nq(z|xy) network:\n "
text += '\n '.join(str(self.xy_to_qz_net).split('\n'))
text += "\np(x|zy) network:\n "
text += '\n '.join(str(self.zy_to_px_net).split('\n'))
return text
class ConditionalM2VAE(BetaVAE):
"""Implementation of M2 model (Kingma et al. 2014). The default
configuration of this layer is optimized for MNIST.
The inference model:
```
q(xyz) = q(z|xy)q(y|x)
q(z|xy) = N(z|f_mu(xy),f_sig(x)))
q(y|x) = Cat(y|pi(x))
```
The generative model:
```
p(x,y,z) = p(x|y,z;theta)p(y)p(z)
p(y) = Cat(y|pi)
p(z) = N(z|0,I)
```
where: `x` is observed inputs, `y` is categorical labels and `z` is
continuous latents
Parameters
------------
n_classes : int
number of supervised labels.
classifier : LayerCreator, optional
classifier `q(y|x)`
xy_to_qz : LayerCreator, optional
a network transforming the joint variable `x,y` for modeling `q(z)`
distribution
zy_to_px : LayerCreator, optional
a network transforming the joint variable `z,y` for modeling `p(x)`
distribution
embedding_dim : int, optional
embedding dimension, by default 128
embedding_method : {'repetition', 'projection', 'dictionary',
'sequential', 'identity'}
embedding method, by default 'sequential'
batchnorm : str, optional
if True, applying batch normalization on the joint variables `x,y`
and `z, y`, by default 0., by default False
dropout : float, optional
if greater than zeros, applying dropout on the joint variables `x,y`
and `z, y`, by default 0.
alpha : float, optional
The weight of discriminative objective added to the labelled
data objective. In the paper, it is recommended:
`alpha = 0.1 * (n_total_samples / n_labelled_samples)`, by default 0.05
beta : float, optional
beta value in BetaVAE, by default 1.
temperature : float, optional
temperature in case using relaxed onehot distribution, by default 10.
marginalize : bool, optional
marginalizing the labels (i.e. `y`), otherwide, use Gumbel-Softmax for
reparameterization, by default True
References
------------
Kingma, D.P., Rezende, D.J., Mohamed, S., Welling, M., 2014.
"Semi-Supervised Learning with Deep Generative Models".
arXiv:1406.5298 [cs, stat].
Notes
------
`batchnorm=True` is not recommended, sometimes training return NaNs values
for KL-divergence.
The default arguments are for MNIST.
"""
def __init__(
self,
labels: RVconf = RVconf(10, 'onehot', name='digits'),
observation: RVconf = RVconf((28, 28, 1),
'bernoulli',
projection=True,
name='image'),
latents: RVconf = RVconf(64, 'mvndiag', projection=True, name='latents'),
classifier: LayerCreator = NetConf([128, 128],
flatten_inputs=True,
name='classifier'),
encoder: LayerCreator = NetConf([512, 512],
flatten_inputs=True,
name='encoder'),
decoder: LayerCreator = NetConf([512, 512],
flatten_inputs=True,
name='decoder'),
xy_to_qz: LayerCreator = NetConf([128, 128], name='xy_to_qz'),
zy_to_px: LayerCreator = NetConf([128, 128], name='zy_to_px'),
embedding_dim: int = 128,
embedding_method: Literal['repetition', 'projection', 'dictionary',
'sequential', 'identity'] = 'sequential',
batchnorm: str = False,
dropout: float = 0.,
alpha: float = 0.05,
beta: float = 1.,
temperature: float = 10.,
marginalize: bool = True,
name: str = 'ConditionalM2VAE',
**kwargs,
):
super().__init__(latents=latents,
observation=observation,
encoder=encoder,
decoder=decoder,
beta=beta,
name=name,
**kwargs)
self.alpha = tf.convert_to_tensor(alpha, dtype=self.dtype, name="alpha")
self.embedding_dim = int(embedding_dim)
self.embedding_method = str(embedding_method)
self.batchnorm = bool(batchnorm)
self.dropout = float(dropout)
## the networks
self.classifier = _parse_layers(classifier)
self.xy_to_qz_net = _parse_layers(xy_to_qz)
self.zy_to_px_net = _parse_layers(zy_to_px)
## check the labels distribution
if hasattr(labels, 'posterior'):
posterior_name = str(labels.posterior)
if hasattr(labels, 'posterior_layer'):
posterior_name = str(labels.posterior_layer).lower()
if 'onehot' not in posterior_name:
warnings.warn(
'Conditional VAE only support one-hot or relaxed one-hot distribution, '
f'but given: {labels}')
self.n_classes = int(np.prod(labels.event_shape))
self.marginalize = bool(marginalize)
# labels distribution
if marginalize:
temperature = 0
if temperature == 0.:
posterior = 'onehot'
dist_kw = dict()
self.relaxed = False
else:
posterior = 'relaxedonehot'
dist_kw = dict(temperature=temperature)
self.relaxed = True
self.labels = RVconf(self.n_classes,
posterior,
projection=True,
prior=OneHotCategorical(probs=[1. / self.n_classes] *
self.n_classes),
name=labels.name,
kwargs=dist_kw).create_posterior()
# create embedder
embedder = get_embedding(self.embedding_method)
# q(z|xy)
self.y_to_qz = embedder(n_classes=self.n_classes,
event_shape=self.embedding_dim,
name='y_to_qz')
self.x_to_qz = Dense(embedding_dim, activation='linear', name='x_to_qz')
# p(x|zy)
self.y_to_px = embedder(n_classes=self.n_classes,
event_shape=self.embedding_dim,
name='y_to_px')
self.z_to_px = Dense(embedding_dim, activation='linear', name='z_to_px')
# batch normalization
if self.batchnorm:
self.qz_xy_norm = BatchNormalization(axis=-1, name='qz_xy_norm')
self.px_zy_norm = BatchNormalization(axis=-1, name='px_zy_norm')
if 0.0 < self.dropout < 1.0:
self.qz_xy_drop = Dropout(rate=self.dropout, name='qz_xy_drop')
self.px_zy_drop = Dropout(rate=self.dropout, name='px_zy_drop')
def classify(self,
inputs: TensorType,
training: bool = False) -> Distribution:
"""Return the prediction of labels"""
if isinstance(inputs, (tuple, list)) and len(inputs) == 1:
inputs = inputs[0]
h = self.classifier(inputs, training=training)
return self.labels(h, training=training)
def sample_labels(self,
sample_shape: List[int] = (),
seed: int = 1) -> tf.Tensor:
"""Sample labels from prior of the labels distribution"""
return bk.atleast_2d(
self.labels.prior.sample(sample_shape=sample_shape, seed=seed))
def encode(self, inputs, training=None, mask=None, **kwargs):
X, y, mask = prepare_ssl_inputs(inputs, mask=mask, n_unsupervised_inputs=1)
X = X[0] # only accept single inputs now
# prepare the label embedding
qy_x = self.classify(X, training=training)
h_y = self.y_to_qz(qy_x, training=training)
# encode normally
h_x = self.encoder(X, training=training, mask=mask)
h_x = bk.flatten(h_x, n_outdim=2)
h_x = self.x_to_qz(h_x, training=training)
# combine into q(z|xy)
h_xy = h_x + h_y
if self.batchnorm:
h_xy = self.qz_xy_norm(h_xy, training=training)
if 0.0 < self.dropout < 1.0:
h_xy = self.qz_xy_drop(h_xy, training=training)
# conditional embedding y
h_xy = self.xy_to_qz_net(h_xy, training=training, mask=mask)
qz_xy = self.latents(h_xy, training=training, mask=mask)
return (qz_xy, qy_x)
def decode(self, latents, training=None, mask=None, **kwargs):
qz_xy, qy_x = latents
h_z = self.z_to_px(qz_xy, training=training)
h_y = self.y_to_px(qy_x, training=training)
h_zy = h_z + h_y
if self.batchnorm:
h_zy = self.px_zy_norm(h_zy, training=training)
if 0.0 < self.dropout < 1.0:
h_zy = self.px_zy_drop(h_zy, training=training)
h_zy = self.zy_to_px_net(h_zy, training=training, mask=mask)
return super().decode(h_zy, training=training, mask=mask)
##################### Helper methods for ELBO
def _unlabelled_loss(self, X_u, y_u, training):
llk_u, kl_u = super().elbo_components(inputs=[X_u, y_u], training=training)
P_u, Q_u = self.last_outputs
# Note: qy_x is always expected to be the last value
qy_x_u = Q_u[-1]
probs = qy_x_u.probs_parameter()
# weighed the loss by qy_x
llk_u = {
k + '_u': tf.reduce_sum(probs * tf.expand_dims(v, axis=-1), axis=-1)
for k, v in llk_u.items()
}
kl_u = {
k + '_u': tf.reduce_sum(tf.expand_dims(probs, axis=0) *
tf.expand_dims(v, axis=-1),
axis=-1) for k, v in kl_u.items()
}
# the entropy
entropy = -tf.reduce_sum(tf.math.multiply_no_nan(tf.math.log(probs), probs),
axis=-1)
llk_u['H_qy'] = entropy
return P_u, Q_u, llk_u, kl_u
def _labelled_loss(self, X_l, y_l, training):
if y_l is not None:
llk_l, kl_l = super().elbo_components(inputs=[X_l, y_l],
training=training)
P_l, Q_l = self.last_outputs
# we need this condition since NaNs are returned if y_l.shape[0] == 0
is_ss = tf.shape(y_l)[0] > 0
llk_l = {
k + '_l': tf.cond(is_ss, lambda: v, lambda: 0.)
for k, v in llk_l.items()
}
kl_l = {
k + '_l': tf.cond(is_ss, lambda: v, lambda: 0.)
for k, v in kl_l.items()
}
qy_x_l = Q_l[-1]
if self.relaxed:
y_l = tf.clip_by_value(y_l, 1e-8, 1. - 1e-8)
llk_l['llk_qy'] = self.alpha * tf.cond(
is_ss, lambda: qy_x_l.log_prob(y_l), lambda: 0.)
else:
P_l = None
Q_l = None
llk_l = {}
kl_l = {}
return P_l, Q_l, llk_l, kl_l
def elbo_components(self, inputs, training=None, mask=None):
X_u, y_u, X_l, y_l = _prepare_elbo(self,
inputs,
training=training,
mask=mask)
### for unlabelled data (assumed always available)
P_u, Q_u, llk_u, kl_u = self._unlabelled_loss(X_u, y_u, training)
### for labelled data, add the discriminative objective
P_l, Q_l, llk_l, kl_l = self._labelled_loss(X_l, y_l, training)
### merge everything
llk = {k: tf.reduce_mean(v) for k, v in dict(**llk_u, **llk_l).items()}
kl = {k: tf.reduce_mean(v) for k, v in dict(**kl_u, **kl_l).items()}
return llk, kl
@classmethod
def is_semi_supervised(self) -> bool:
return True
def __str__(self):
text = super().__str__()
text += f"\nEmbedding:"
text += f"\n Dim : {self.embedding_dim}"
text += f"\n Method : '{self.embedding_method}'"
text += f"\n Batchnorm: {self.batchnorm}"
text += f"\n Dropout : {self.dropout}"
text += "\nClassifier:\n "
text += '\n '.join(str(self.classifier).split('\n'))
text += f"\n {self.labels}"
text += "\nq(z|xy) network:\n "
text += '\n '.join(str(self.xy_to_qz_net).split('\n'))
text += "\np(x|zy) network:\n "
text += '\n '.join(str(self.zy_to_px_net).split('\n'))
return text
class StructuredSemiVAE(BetaVAE):
r"""
Reference:
Siddharth, N., Paige, B., et al., 2017. "Learning Disentangled
Representations with Semi-Supervised Deep Generative Models".
arXiv:1706.00400 [cs, stat].
"""
# ===========================================================================
# M3 Reparameterized VAE
# ===========================================================================
class PriorRegressor(keras.layers.Layer):
def __init__(self, n_classes: int, **kwargs):
super().__init__(**kwargs)
self.n_classes = int(n_classes)
def build(self, input_shape=None):
dim = self.n_classes
self.diag_loc_true = tf.Variable(tf.zeros((dim), dtype=self.dtype))
self.diag_loc_false = tf.Variable(tf.zeros((dim), dtype=self.dtype))
self.diag_scale_true = tf.Variable(tf.ones((dim), dtype=self.dtype))
self.diag_scale_false = tf.Variable(tf.ones((dim), dtype=self.dtype))
self.dist = IndependentNormal(event_shape=(dim,))
return super().build((None, self.n_classes))
def call(self, x, training=None, mask=None):
loc = x * self.diag_loc_true + (1 - x) * self.diag_loc_false
scale = x * self.diag_scale_true + (1 - x) * self.diag_scale_false
scale = tf.clip_by_value(tf.nn.softplus(scale), 1e-3, 1e12)
return self.dist(tf.concat([loc, scale], axis=-1))
class reparamsM3VAE(BetaVAE):
def __init__(
self,
labels: RVconf = RVconf(10, 'relaxedonehot', name='digits'),
observation: RVconf = RVconf((28, 28, 1),
'bernoulli',
projection=True,
name='image'),
latents: RVconf = RVconf(54, 'mvndiag', projection=True, name='latents'),
classifier: LayerCreator = NetConf([128, 128],
flatten_inputs=True,
name='classifier'),
encoder: LayerCreator = NetConf([512, 512],
flatten_inputs=True,
name='encoder'),
decoder: LayerCreator = NetConf([512, 512],
flatten_inputs=True,
name='decoder'),
n_resamples: int = 128,
alpha: float = 0.05,
temperature: float = 10.,
name: str = 'ReparameterizedM3VAE',
**kwargs,
):
super().__init__(latents=latents,
observation=observation,
encoder=encoder,
decoder=decoder,
name=name,
**kwargs)
assert labels.posterior == 'relaxedonehot', \
f"only support 'relaxedonehot' distribution for labels, given {labels.posterior}"
self.marginalize = False
self.n_classes = int(np.prod(labels.event_shape))
self.n_resamples = int(n_resamples)
self.regressor = PriorRegressor(self.n_classes)
self.labels = RVconf(
self.n_classes,
posterior='relaxedonehot',
projection=True,
prior=OneHotCategorical(probs=[1. / self.n_classes] * self.n_classes),
name=labels.name,
kwargs=dict(temperature=temperature)).create_posterior()
self.denotations = RVconf(event_shape=(self.n_classes,),
posterior='normal',
projection=True,
name='denotations').create_posterior()
self.classifier = _parse_layers(classifier)
def build(self, input_shape):
self.regressor.build()
self.classifier.build((None, self.n_classes))
return super().build(input_shape)
def classify(self,
inputs: TensorType,
training: bool = False) -> Distribution:
"""Return the prediction of labels"""
if isinstance(inputs, (tuple, list)) and len(inputs) == 1:
inputs = inputs[0]
h = self.classifier(inputs, training=training)
return self.labels(h, training=training)
def encode(self, inputs, training=None, mask=None, **kwargs):
X, y, mask = prepare_ssl_inputs(inputs, mask=mask, n_unsupervised_inputs=1)
X = X[0] # only accept single inputs now
# encode normally
h_x = self.encoder(X, training=training, mask=mask)
qz_x = self.latents(h_x, training=training, mask=mask)
qzc_x = self.denotations(h_x, training=training, mask=mask)
# prepare the label embedding
z_c = tf.convert_to_tensor(qzc_x)
qy_zx = self.classify(z_c, training=training)
return (qz_x, qzc_x, qy_zx)
def decode(self, latents, training=None, mask=None, **kwargs):
qz_x, qzc_x, qy_zx = latents
z = tf.concat([qz_x, qzc_x], axis=-1)
return super().decode(z, training=training, mask=mask, **kwargs)
def elbo_components(self, inputs, training=None, mask=None):
X_u, y_u, X_l, y_l = _prepare_elbo(self,
inputs,
training=training,
mask=mask)
y_l = tf.clip_by_value(y_l, 1e-8, 1. - 1e-8)
px_z_u, (qz_x_u, qzc_x_u, qy_zx_u) = self(X_u, training=training)
px_z_l, (qz_x_l, qzc_x_l, qy_zx_l) = self(X_l, training=training)
z_exc = tf.concat(
[tf.convert_to_tensor(qz_x_u),
tf.convert_to_tensor(qz_x_l)], axis=0)
z_c = tf.concat(
[tf.convert_to_tensor(qzc_x_u),
tf.convert_to_tensor(qzc_x_l)], axis=0)
# Convert y to one-hot vector and Sample y for those without labels
y_sup = y_l
y_uns = tf.convert_to_tensor(qy_zx_u)
y = tf.concat((y_uns, y_sup), axis=0)
# log q(y|z_c)
h = tf.concat([qy_zx_u.logits, qy_zx_l.logits], axis=0)
log_q_y_zc = tf.reduce_sum(h * y, axis=1)
# log p(x|z)
log_p_x_z = tf.concat([px_z_u.log_prob(X_u), px_z_l.log_prob(X_l)], axis=0)
# log p(z_c|y)
pzc_y = self.regressor(y)
log_p_zc_y = pzc_y.log_prob(z_c)
# log p(z_\c)
dist = Normal(tf.cast(0., self.dtype), 1.)
log_p_zexc = tf.reduce_sum(dist.log_prob(z_exc), axis=-1)
# log p(z|y)
log_p_z_y = log_p_zc_y + log_p_zexc
# log q(y|x) (Draw 128 points from q(z_c|x). Supervised samples only)
h = qzc_x_l.sample(self.n_resamples)
h = tf.reshape(h, (-1, h.shape[-1]))
qy_x = self.classify(h, training=training)
qy_x_logits = tf.reshape(qy_x.logits, (self.n_resamples, -1, h.shape[-1]))
h = tf.reduce_logsumexp(h, axis=0) - tf.math.log(128.)
log_q_y_x = tf.reduce_sum(h * y_l, axis=1)
# log q(z|x)
log_qz_x = tf.concat([qz_x_u.log_prob(qz_x_u),
qz_x_l.log_prob(qz_x_l)],
axis=0)
log_qzc_x = tf.concat(
[qzc_x_u.log_prob(qzc_x_u),
qzc_x_l.log_prob(qzc_x_l)], axis=0)
log_q_z_x = log_qz_x + log_qzc_x
# Calculate the lower bound
n_uns = ps.shape(X_u)[0]
h = log_p_x_z + log_p_z_y - log_q_y_zc - log_q_z_x
coef_sup = tf.math.exp(log_q_y_zc[n_uns:] - log_q_y_x)
coef_uns = tf.ones((n_uns,), dtype=self.dtype)
coef = tf.concat((coef_uns, coef_sup), axis=0)
zeros = tf.zeros((n_uns,), dtype=self.dtype)
lb = coef * h + tf.concat((zeros, log_q_y_x), axis=0)
return {'elbo': lb}, {}
def _elbo_components(self, inputs, training=None, mask=None):
X_u, y_u, X_l, y_l = _prepare_elbo(self,
inputs,
training=training,
mask=mask)
y_l = tf.clip_by_value(y_l, 1e-8, 1. - 1e-8)
## ELBO unsupervised examples
elbo_u = super().elbo_components(X_u, training=training, mask=mask)
P_u, Q_u = self.last_outputs
## ELBO supervised examples
elbo_l = super().elbo_components(X_l, training=training, mask=mask)
P_l, Q_l = self.last_outputs
## The classifier loss
qy_zx_u = Q_u[-1]
qy_zx_l = Q_l[-1]
y_zx_u = tf.convert_to_tensor(qy_zx_u)
y = tf.concat([y_zx_u, y_l], axis=0)
log_qy_zx = tf.concat([qy_zx_u.log_prob(y_zx_u),
qy_zx_l.log_prob(y_l)],
axis=0)
## The conditional prior (reparameterized regressor, sec 4.1)
pzc_y = self.regressor(y)
z_c = tf.concat([Q_u[1], Q_l[1]], axis=0)
log_pzc_y = pzc_y.log_prob(z_c)
## MCMC sample marginalize z_c to estimate q(y|x), B2
z_c = Q_l[1].sample(self.n_resamples)
qy_x = self.classify(tf.reshape(z_c, (-1, z_c.shape[-1])),
training=training)
log_qy_x = qy_x.log_prob(tf.repeat(y_l, self.n_resamples, axis=0))
log_qy_x = tf.reshape(log_qy_x, (self.n_resamples, -1))
log_qy_x = (tf.reduce_logsumexp(log_qy_x, axis=0) -
tf.math.log(tf.cast(self.n_resamples, self.dtype)))
## coefficients
## the final elbo
llk = {}
kl = {}
for k, v in elbo_u[0].items():
llk[f'{k}_u'] = v
for k, v in elbo_l[0].items():
llk[f'{k}_u'] = v
for k, v in elbo_u[1].items():
kl[f'{k}_u'] = v
for k, v in elbo_l[1].items():
kl[f'{k}_u'] = v
llk['log_pzc_y'] = log_pzc_y
print(llk)
print(kl)
exit()
@classmethod
def is_semi_supervised(self) -> bool:
return True