-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathhierarchical_vae.py
1117 lines (1019 loc) · 40.9 KB
/
hierarchical_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import inspect
from contextlib import contextmanager
from functools import partial
from types import MethodType
from typing import Any, Callable, Dict, List, Tuple
from typing import Union, Optional, Sequence
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.python.keras.layers import Layer, Wrapper, Dense, Conv2D, \
Conv1D, Conv3D, Conv1DTranspose, Conv2DTranspose, Conv3DTranspose, Reshape, \
AvgPool1D, AvgPool2D, AvgPool3D, MaxPool1D, MaxPool2D, MaxPool3D, Activation, \
UpSampling1D, UpSampling2D, UpSampling3D
from tensorflow_probability.python.distributions import Distribution, Normal, \
MultivariateNormalDiag, Independent
from tensorflow_probability.python.layers.distribution_layer import (
DistributionLambda)
from typing_extensions import Literal
from odin.bay.helpers import kl_divergence
from odin.bay.random_variable import RVconf
from odin.bay.vi.autoencoder.beta_vae import AnnealingVAE, BetaVAE
from odin.bay.vi.autoencoder.variational_autoencoder import _parse_layers
from odin.networks import NetConf
from odin.utils import as_tuple
__all__ = [
'MergeNormal',
'BiConvLatents',
'ParallelLatents',
'BiDenseLatents',
'HierarchicalVAE',
'UnetVAE'
]
# ===========================================================================
# Helpers
# ===========================================================================
_NDIMS_CONV = {
3: (Conv1D, Conv1DTranspose),
4: (Conv2D, Conv2DTranspose),
5: (Conv3D, Conv3DTranspose)
}
_NDIMS_POOL = {3: dict(avg=AvgPool1D, max=MaxPool1D),
4: dict(avg=AvgPool2D, max=MaxPool2D),
5: dict(avg=AvgPool3D, max=MaxPool3D)}
_NDIMS_UNPOOL = {3: UpSampling1D, 4: UpSampling2D, 5: UpSampling3D}
def _create_dist(params, event_ndims, dtype):
loc, scale = tf.split(params, 2, axis=-1)
scale = tf.nn.softplus(scale) + tf.cast(tf.exp(-7.), dtype)
d = Normal(loc, scale)
d = Independent(d, reinterpreted_batch_ndims=event_ndims)
return d
def _upsample_by_conv(
layer: Union[Conv1D, Conv2D, Conv3D],
layer_t: Union[Conv1DTranspose, Conv2DTranspose, Conv3DTranspose],
input_shape: Sequence[int],
output_shape: Sequence[int],
kernel_size: Tuple[int, int],
padding: Literal['same', 'valid'],
strides: Tuple[int, int]):
in_image = input_shape[1:-1]
out_image = output_shape[1:-1]
out_filters = output_shape[-1]
# shape match only use 1x1 projection
if in_image == out_image:
conv = layer(filters=out_filters, kernel_size=1, name='ConvOutput')
# upsampling
elif all(o >= i for i, o in zip(in_image, out_image)):
kernel = [k + (1 if padding == 'valid' and k % s != 0 else 0)
for k, s in zip(kernel_size, strides)]
conv = layer_t(filters=out_filters,
kernel_size=kernel,
strides=strides,
padding=padding,
name='ConvOutput')
# cannot do downsampling
else:
raise RuntimeError('Cannot infer output projection for input shape: '
f'{input_shape} and output shape: {output_shape}')
conv.build(input_shape)
shape = conv.compute_output_shape(input_shape)
tf.assert_equal(
shape[1:], output_shape[1:],
'Failed to infer proper convolutional operator for upsampling from '
f'{input_shape} to {output_shape}, the resulted shape is {shape}')
return conv
def _call(self, inputs, **kwargs):
outputs = self._old_call(inputs, **kwargs)
self._last_outputs = outputs
return outputs
class MergeNormal(DistributionLambda):
""" Merge two Gaussian based on weighed variance
https://github.com/casperkaae/LVAE/blob/066858a3fb53bb1c529a6f12ae5afb0955722845/run_models.py#L106
"""
def __init__(self, name='MergeNormal'):
super().__init__(make_distribution_fn=MergeNormal.new,
name=name)
@staticmethod
def new(dists):
q_e, q_d = dists
mu_e = q_e.mean()
mu_d = q_d.mean()
prec_e = 1 / q_e.variance()
prec_d = 1 / q_d.variance()
mu = (mu_e * prec_e + mu_d * prec_d) / (prec_e + prec_d)
scale = tf.math.sqrt(1 / (prec_e + prec_d))
dist = Normal(loc=mu, scale=scale)
if isinstance(q_e, Independent):
ndim = q_e.reinterpreted_batch_ndims
dist = Independent(dist, reinterpreted_batch_ndims=ndim)
return dist
# ===========================================================================
# Wrapper for hierarchical latent variable
# ===========================================================================
class HierarchicalLatents(Wrapper):
def __init__(self,
layer: Layer,
beta: float = 1.,
disable: bool = False,
**kwargs):
super().__init__(layer=layer,
trainable=not disable and kwargs.pop('trainable', True),
**kwargs)
# store the last distributions
self._posterior = None
self._prior = None
self._is_sampling = False
self._disable = bool(disable)
self.beta = tf.convert_to_tensor(beta, dtype=self.dtype, name='beta')
self._latents_shape = None
# prepare the layer
self.input_ndim = self.layer.input_spec.min_ndim
spec = inspect.getfullargspec(layer.call)
self._layer_args = set(spec.args + spec.kwonlyargs)
@property
def layers(self) -> Sequence[Layer]:
return [v for k, v in self.__dict__.items() if isinstance(v, Layer)]
def sampling(self):
"""Sampling mode, forward prior samples"""
self._is_sampling = True
return self
def inference(self):
"""Inference mode, forward posterior samples (require encoder states)"""
self._is_sampling = False
return self
@property
def is_inference(self) -> bool:
return not self._is_sampling
def enable(self):
"""Enable stochastic inference and generation for this variable"""
self._disable = False
self.trainable = True
return self
@property
def units(self) -> int:
return int(np.prod(self._latents_shape))
@property
def latents_shape(self) -> Sequence[int]:
return self._latents_shape
@property
def posterior(self) -> Optional[Distribution]:
return self._posterior
@property
def prior(self) -> Optional[Distribution]:
return self._prior
def __repr__(self):
return self.__str__()
def __str__(self):
units = None
if self.latents_shape is not None:
units = int(np.prod(self.latents_shape))
return (
f"<{self.__class__.__name__} "
f"'{self.name}' enable:{not self._disable} "
f"sampl:{self._is_sampling} shape:{self.latents_shape}={units} "
f"beta:{self.beta}>")
def kl_divergence(self,
analytic: bool = False,
reverse: bool = False,
free_bits: Optional[float] = None,
raise_not_init: bool = True) -> tf.Tensor:
if self._disable:
return tf.zeros((), dtype=self.dtype)
if raise_not_init:
if self._posterior is None:
raise ValueError('No posterior for the hierarchical latent variable.')
if self._prior is None:
raise ValueError("This HierarchicalLatents haven't been called.")
elif self._posterior is None or self._prior is None:
return tf.zeros((), dtype=self.dtype)
qz = self.posterior
pz = self.prior
kld = kl_divergence(q=qz, p=pz, analytic=analytic, reverse=reverse,
free_bits=free_bits)
return self.beta * kld
def compute_output_shape(self, input_shape) -> Sequence[Union[None, int]]:
return self.layer.compute_output_shape(input_shape)
def call(self, inputs, training=None, mask=None, **kwargs):
if 'training' in self._layer_args:
kwargs['training'] = training
if 'mask' in self._layer_args:
kwargs['mask'] = mask
hidden_d = self.layer.call(inputs, **kwargs)
return hidden_d
class BiConvLatents(HierarchicalLatents):
"""Bidirectional inference using Convolutional Network for
hierarchical latent variables
Parameters
----------
layer : `keras.layers.Layer`
the decoder layer for top-down (generative)
encoder : `keras.layers.Layer`, optional
the encoder layer for bottom-up (inference)
pre_affine : bool
if True, applying affine to project convolutional output to latent
units, otherwise, use the convolutional image as is.
output_activation : {'str', Callable}
last activation before residual connection
deterministic_features : bool
if True, concatenate deterministic features to the samples from posterior
(or prior)
residual_coef : float
if greater than 0, add residual connection
merge_normal : bool
merge two normal distribution
"""
def __init__(
self,
layer: Layer,
encoder: Optional[Layer] = None,
filters: int = 32,
kernel_size: Union[int, Sequence[int]] = 4,
strides: Union[int, Sequence[int]] = 2,
padding: Literal['valid', 'same'] = 'same',
conv_kw: Optional[Dict[str, Any]] = None,
pre_affine: bool = False,
output_activation: Union[None, 'str', Callable[[Any], Any]] = None,
deterministic_features: bool = True,
residual_coef: float = 1.0,
merge_normal: bool = False,
**kwargs):
super().__init__(layer=layer, **kwargs)
if encoder is not None:
encoder._old_call = encoder.call
encoder.call = MethodType(_call, encoder)
self.encoder = encoder
self.pre_affine = bool(pre_affine)
self.residual_coef = residual_coef
self.deterministic_features = deterministic_features
if output_activation is None and hasattr(self.layer, 'activation'):
output_activation = self.layer.activation
self.output_activation = keras.activations.get(output_activation)
# === 1. for creating layer
self._network_kw = dict(
# parameters for loc and scale
filters=(1 if pre_affine else 2) * filters,
kernel_size=kernel_size,
strides=strides,
padding=padding)
if conv_kw is not None:
self._network_kw.update(conv_kw)
# === 2. distribution
if merge_normal:
self._merge_normal = MergeNormal()
else:
self._merge_normal = None
# === 2. others
self._conv_prior = None
self._conv_posterior = None
self._conv_deter = None
self._conv_out = None
self._affine_prior = None
self._affine_posterior = None
self._dist_prior = None
self._dist_posterior = None
self.concat = keras.layers.Concatenate(axis=-1)
@property
def is_inference(self) -> bool:
return (not self._is_sampling and
self.encoder is not None and
hasattr(self.encoder, '_last_outputs') and
self.encoder._last_outputs is not None)
def build(self, input_shape=None):
super().build(input_shape)
if self._disable:
return
decoder_shape = self.layer.compute_output_shape(input_shape)
layer, layer_t = _NDIMS_CONV[self.input_ndim]
# === 1. create projection layer
if self.encoder is not None:
self._conv_posterior = layer(**self._network_kw, name='ConvPosterior')
# posterior projection (assume encoder output shape is the same as
# decoder output shape)
self._conv_posterior.build(
self.concat.compute_output_shape([decoder_shape, decoder_shape]))
# prior projection
self._conv_prior = layer(**self._network_kw, name='ConvPrior')
self._conv_prior.build(decoder_shape)
# deterministic projection
if self.deterministic_features:
kw = dict(self._network_kw)
if not self.pre_affine:
kw['filters'] /= 2
self._conv_deter = layer(**kw, name='ConvDeterministic')
self._conv_deter.build(decoder_shape)
# === 2. create distribution
# compute the parameter shape for the distribution
params_shape = self._conv_prior.compute_output_shape(decoder_shape)
if self.pre_affine:
def create_affine():
return [keras.layers.Flatten(),
Activation(self.output_activation),
Dense(int(np.prod(params_shape[1:])) * 2),
Reshape(params_shape[1:-1] + (params_shape[-1] * 2,))]
self._affine_prior = keras.Sequential(create_affine(),
name='PriorAffine')
self._affine_prior.build(params_shape)
self._affine_posterior = keras.Sequential(create_affine(),
name='PosteriorAffine')
self._affine_posterior.build(params_shape)
params_shape = self._affine_prior.compute_output_shape(params_shape)
make_distribution = partial(_create_dist,
event_ndims=len(params_shape) - 1,
dtype=self.dtype)
self._dist_posterior = DistributionLambda(
make_distribution_fn=make_distribution, name=f'{self.name}_posterior')
self._dist_posterior.build(params_shape)
self._dist_prior = DistributionLambda(
make_distribution_fn=make_distribution, name=f'{self.name}_prior')
self._dist_prior.build(params_shape)
# dynamically infer the shape
latents_shape = tf.convert_to_tensor(self._dist_posterior(
keras.layers.Input(params_shape[1:]))).shape
self._latents_shape = latents_shape[1:]
if self.deterministic_features:
deter_shape = self._conv_deter.compute_output_shape(decoder_shape)
latents_shape = self.concat.compute_output_shape(
[deter_shape, latents_shape])
# === 3. final output affine
if self.residual_coef > 0:
self._conv_out = _upsample_by_conv(
layer, layer_t,
input_shape=latents_shape,
output_shape=decoder_shape,
kernel_size=self._conv_prior.kernel_size,
padding=self._conv_prior.padding,
strides=self._conv_prior.strides)
def call(self, inputs, training=None, mask=None, **kwargs):
# === 1. call the layer
hidden_d = super().call(inputs, training=training, mask=mask, **kwargs)
if self._disable:
return hidden_d
# === 2. project and create the distribution
h_prior = self._conv_prior(hidden_d)
if self._affine_prior is not None:
h_prior = self._affine_prior(h_prior)
prior = self._dist_prior(h_prior)
self._prior = prior
# === 3. inference
dist = prior
if self.is_inference:
hidden_e = self.encoder._last_outputs
# just stop inference if there is no Encoder state
tf.debugging.assert_equal(tf.shape(hidden_e), tf.shape(hidden_d),
f'Shape of inference {hidden_e.shape} and '
f'generative {hidden_d.shape} mismatch. '
f'Change to sampling mode if possible')
# (Kingma 2016) use add, we concat here
h_post = self.concat([hidden_e, hidden_d])
h_post = self._conv_posterior(h_post)
if self._affine_posterior is not None:
h_post = self._affine_posterior(h_post)
posterior = self._dist_posterior(h_post)
# (Maaloe 2016) merging two Normal distribution
if self._merge_normal is not None:
posterior = self._merge_normal([posterior, prior])
self._posterior = posterior
dist = posterior
# === 4. output
outputs = tf.convert_to_tensor(dist)
if self.deterministic_features:
hidden_deter = self._conv_deter(hidden_d)
outputs = self.concat([outputs, hidden_deter])
if self.residual_coef > 0.:
outputs = self._conv_out(outputs)
outputs = self.output_activation(outputs)
outputs = outputs + self.residual_coef * hidden_d
return outputs
class BiDenseLatents(HierarchicalLatents):
"""Bidirectional inference for hierarchical latent variables
Parameters
----------
layer : `keras.layers.Layer`
the decoder layer for top-down (generative)
encoder : `keras.layers.Layer`, optional
the encoder layer for bottom-up (inference)
units : int
number of latent units
dense_kw : `Dict[str, Any]`, optional
keyword for initialize `Dense` layer for latents
pool_mode : {'avg', 'max'}
perform downsampling on images before `Dense` projection
pool_size : int
pooling size
output_activation : {'str', Callable}
last activation before residual connection
deterministic_features : bool
if True, concatenate deterministic features to the samples from posterior
(or prior)
residual_coef : float
if greater than 0, add residual connection
merge_normal : bool
merge two normal distribution
"""
def __init__(
self,
layer: Layer,
encoder: Optional[Layer] = None,
units: int = 32,
dense_kw: Optional[Dict[str, Any]] = None,
pool_mode: Literal['avg', 'max'] = 'avg',
pool_size: Optional[int] = None,
output_activation: Union[None, 'str', Callable[[Any], Any]] = None,
deterministic_features: bool = True,
residual_coef: float = 1.0,
merge_normal: bool = False,
**kwargs):
super().__init__(layer=layer, name=kwargs.pop('name', None))
if encoder is not None:
encoder._old_call = encoder.call
encoder.call = MethodType(_call, encoder)
self.encoder = encoder
self.residual_coef = residual_coef
self.deterministic_features = deterministic_features
if output_activation is None and hasattr(self.layer, 'activation'):
output_activation = self.layer.activation
self.output_activation = keras.activations.get(output_activation)
# === 1. for creating layer
self._network_kw = dict(units=2 * units)
if dense_kw is not None:
self._network_kw.update(dense_kw)
# === 2. distribution
if merge_normal:
self._merge_normal = MergeNormal()
else:
self._merge_normal = None
# === 2. others
self._latents_shape = None
self._dense_prior = None
self._dense_posterior = None
self._dense_deter = None
self._dense_out = None
self._dist_prior = None
self._dist_posterior = None
# === 3. util layers
self.concat = keras.layers.Concatenate(axis=-1)
self.flatten = keras.layers.Flatten()
if pool_size is not None and pool_size > 1 and self.input_ndim > 2:
self.pooling = _NDIMS_POOL[self.input_ndim][pool_mode](
pool_size, name='Pooling')
self.unpooling = _NDIMS_UNPOOL[self.input_ndim](
pool_size, name='Unpooling')
else:
self.pooling = Activation('linear', name='Pooling')
self.unpooling = Activation('linear', name='Unpooling')
@property
def is_inference(self) -> bool:
return (not self._is_sampling and
self.encoder is not None and
hasattr(self.encoder, '_last_outputs') and
self.encoder._last_outputs is not None)
def build(self, input_shape=None):
super().build(input_shape)
if self._disable:
return
org_decoder_shape = self.layer.compute_output_shape(input_shape)
# === 0. pooling
self.pooling.build(org_decoder_shape)
pool_decoder_shape = self.pooling.compute_output_shape(org_decoder_shape)
decoder_shape = self.flatten.compute_output_shape(pool_decoder_shape)
# === 1. create projection layer
if self.encoder is not None:
self._dense_posterior = Dense(**self._network_kw, name='DensePosterior')
# posterior projection
shape = self.concat.compute_output_shape([decoder_shape, decoder_shape])
self._dense_posterior.build(shape)
# prior projection
self._dense_prior = Dense(**self._network_kw, name='DensePrior')
self._dense_prior.build(decoder_shape)
# deterministic projection
kw = dict(self._network_kw)
kw['units'] /= 2
if self.deterministic_features:
self._dense_deter = Dense(**kw, name='DenseDeterministic')
self._dense_deter.build(decoder_shape)
# === 2. create distribution
# compute the parameter shape for the distribution
params_shape = self._dense_prior.compute_output_shape(decoder_shape)
self._dist_posterior = DistributionLambda(
make_distribution_fn=partial(_create_dist,
event_ndims=len(params_shape) - 1,
dtype=self.dtype),
name=f'{self.name}_posterior')
self._dist_posterior.build(params_shape)
self._dist_prior = DistributionLambda(
make_distribution_fn=partial(_create_dist,
event_ndims=len(params_shape) - 1,
dtype=self.dtype),
name=f'{self.name}_prior')
self._dist_prior.build(params_shape)
# dynamically infer the shape
latents_shape = tf.convert_to_tensor(self._dist_posterior(
keras.layers.Input(params_shape[1:]))).shape
self._latents_shape = latents_shape[1:]
if self.deterministic_features:
deter_shape = self._dense_deter.compute_output_shape(decoder_shape)
latents_shape = self.concat.compute_output_shape(
[deter_shape, latents_shape])
# === 3. final output affine
if self.residual_coef > 0:
units = int(np.prod(pool_decoder_shape[1:]))
layers = [Dense(units),
Reshape(pool_decoder_shape[1:]),
self.unpooling]
if self.input_ndim > 2:
conv, _ = _NDIMS_CONV[self.input_ndim]
layers.append(conv(org_decoder_shape[-1], 3, 1, padding='same'))
self._dense_out = keras.Sequential(layers, name='DenseOutput')
self._dense_out.build(latents_shape)
def call(self, inputs, training=None, mask=None, **kwargs):
# === 1. call the layer
hidden_d = super().call(inputs, training=training, mask=mask, **kwargs)
if self._disable:
return hidden_d
# === 2. project and create the distribution
flat_hd = self.flatten(self.pooling(hidden_d))
prior = self._dist_prior(self._dense_prior(flat_hd))
self._prior = prior
# === 3. inference
dist = prior
if self.is_inference:
hidden_e = self.encoder._last_outputs
# just stop inference if there is no Encoder state
tf.debugging.assert_equal(tf.shape(hidden_e), tf.shape(hidden_d),
f'Shape of inference {hidden_e.shape} and '
f'generative {hidden_d.shape} mismatch. '
f'Change to sampling mode if possible')
# (Kingma 2016) use add, we concat here
h = self.concat([hidden_e, hidden_d])
posterior = self._dist_posterior(
self._dense_posterior(self.flatten(self.pooling(h))))
# (Maaloe 2016) merging two Normal distribution
if self._merge_normal is not None:
posterior = self._merge_normal([posterior, prior])
self._posterior = posterior
dist = posterior
# === 4. output
outputs = tf.convert_to_tensor(dist)
if self.deterministic_features:
hidden_deter = self._dense_deter(flat_hd)
outputs = self.concat([outputs, hidden_deter])
if self.residual_coef > 0.:
outputs = self._dense_out(outputs)
outputs = self.output_activation(outputs)
outputs = outputs + self.residual_coef * hidden_d
return outputs
class ParallelLatents(HierarchicalLatents):
"""Because information will take the shortest path to flow, it
is recommended to set the number of units to be smaller or equal than
`z0`
References
----------
Zhao, S., Song, J., Ermon, S., 2017. Learning Hierarchical Features from
Generative Models. arXiv:1702.08396 [cs, stat].
"""
def __init__(
self,
layer: Layer,
encoder: Optional[Layer] = None,
filters: int = 32,
kernel_size: Union[int, Sequence[int]] = 4,
strides: Union[int, Sequence[int]] = 2,
padding: Literal['valid', 'same'] = 'same',
conv_kw: Optional[Dict[str, Any]] = None,
output_activation: Union[None, 'str', Callable[[Any], Any]] = None,
residual_coef: float = 1.0,
**kwargs):
super().__init__(layer=layer, **kwargs)
if encoder is not None:
encoder._old_call = encoder.call
encoder.call = MethodType(_call, encoder)
self.encoder = encoder
self.residual_coef = residual_coef
if output_activation is None and hasattr(self.layer, 'activation'):
output_activation = self.layer.activation
self.output_activation = keras.activations.get(output_activation)
# === 1. for creating layer
self._network_kw = dict(
# parameters for loc and scale
filters=2 * filters,
kernel_size=kernel_size,
strides=strides,
padding=padding)
if conv_kw is not None:
self._network_kw.update(conv_kw)
# === 2. others
self._conv_posterior = None
self._conv_out = None
self._dist_posterior = None
self.concat = keras.layers.Concatenate(axis=-1)
@property
def is_inference(self) -> bool:
return (not self._is_sampling and
self.encoder is not None and
hasattr(self.encoder, '_last_outputs') and
self.encoder._last_outputs is not None)
def build(self, input_shape=None):
super().build(input_shape)
if self._disable:
return
decoder_shape = self.layer.compute_output_shape(input_shape)
layer, layer_t = _NDIMS_CONV[self.input_ndim]
# === 1. create projection layer
assert self.encoder is not None, \
'ParallelLatents require encoder to be specified'
# posterior projection (assume encoder shape and decoder shape the same)
self._conv_posterior = layer(**self._network_kw, name='ConvPosterior')
self._conv_posterior.build(decoder_shape)
# === 2. distribution
params_shape = self._conv_posterior.compute_output_shape(decoder_shape)
self._dist_posterior = DistributionLambda(
make_distribution_fn=partial(_create_dist,
event_ndims=len(params_shape) - 1,
dtype=self.dtype),
name=f'{self.name}_posterior')
self._dist_posterior.build(params_shape)
# dynamically infer the shape
latents_shape = tf.convert_to_tensor(self._dist_posterior(
keras.layers.Input(params_shape[1:]))).shape
self._latents_shape = latents_shape[1:]
# create the prior N(0,I)
self._prior = Independent(
Normal(loc=tf.zeros(self.latents_shape, dtype=self.dtype),
scale=tf.ones(self.latents_shape, dtype=self.dtype)),
reinterpreted_batch_ndims=len(self.latents_shape),
name=f'{self.name}_prior')
# === 3. final output affine
self._conv_out = _upsample_by_conv(
layer, layer_t,
input_shape=latents_shape,
output_shape=decoder_shape,
kernel_size=self._conv_posterior.kernel_size,
padding=self._conv_posterior.padding,
strides=self._conv_posterior.strides)
def call(self, inputs, training=None, mask=None, **kwargs):
hidden_d = super().call(inputs, training=training, mask=mask, **kwargs)
if self._disable:
return hidden_d
# === 2. inference
if self.is_inference:
hidden_e = self.encoder._last_outputs
# just stop inference if there is no Encoder state
tf.debugging.assert_equal(tf.shape(hidden_e), tf.shape(hidden_d),
f'Shape of inference {hidden_e.shape} and '
f'generative {hidden_d.shape} mismatch. '
f'Change to sampling mode if possible')
posterior = self._dist_posterior(self._conv_posterior(hidden_e))
self._posterior = posterior
outputs = tf.convert_to_tensor(posterior)
else:
outputs = self.prior.sample(tf.shape(hidden_d)[0])
# === 3. projection and combine
outputs = self._conv_out(outputs)
outputs = self.output_activation(outputs)
return outputs + self.residual_coef * hidden_d
# ===========================================================================
# Hierarchical VAE
# ===========================================================================
class HierarchicalVAE(AnnealingVAE):
""" A hierachical VAE with multiple stochastic layers stacked on top of the previous one
(autoregressive):
$q(z|x) = q(z_1|x) \mul_{i=2}^L q(z_i|z_{i-1})$
Inference: `X -> E(->z1) -> E1(->z2) -> E2 -> z`
Generation: `z -> D2 -> z2 -> D1 -> z1 -> D -> X~`
The return from `encode` method: (q_z, q_z2, q_z1)
The return from `decode` method: (X~, p_z2, p_z1)
Hierachical takes longer to train and often more unstable, reduce the learning rate
is often desired.
Parameters
----------
ladder_units : List[int], optional
number of hidden units for layers in the ladder, each element corresponding
to a ladder latents, by default [256]
ladder_latents : List[int], optional
number of latents units for each latent variable in the ladder,
by default [64]
ladder_layers : int, optional
number of layers for each hidden layer in the ladder, by default 2
batchnorm : bool, optional
use batch normalization in the ladder hidden layers, by default True
dropout : float, optional
dropout rate for the ladder hidden layers, by default 0.0
activation : Callable[[tf.Tensor], tf.Tensor], optional
activation function for the ladder hidden layers, by default tf.nn.leaky_relu
beta : Union[float, Interpolation], optional
a fixed beta or interpolated beta based on iteration step. It is recommended
to keep the beta value > 0 at the beginning of training, especially when using
powerful architecture for encoder and decoder. Otherwise, the suboptimal
latents could drive the network to very unstable loss region which result NaNs
during early training,
by default `linear(vmin=1e-4, vmax=1., length=2000)`
tie_latents : bool, optional
tie the parameters that encoding means and standard deviation for both
$q(z_i|z_{i-1})$ and $p(z_i|z_{i-1})$, by default False
all_standard_prior : bool, optional
use standard normal as prior for all latent variables, by default False
References
----------
Sønderby, C.K., Raiko, T., Maaløe, L., Sønderby, S.K., Winther, O.,
Ladder variational autoencoders,
Advances in Neural Information Processing Systems, 2016
Tomczak, J.M., Welling, M., 2018. VAE with a VampPrior.
arXiv:1705.07120 [cs, stat].
D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling,
Improved variational inference with inverse autoregressive flow, in
Advances in neural information processing systems, 2016
"""
def __init__(self, free_bits=0.25, **kwargs):
super().__init__(free_bits=free_bits, **kwargs)
found_hierarchical_vars = False
self._hierarchical_vars = []
self._hierarchical_vars: List[HierarchicalLatents]
for layer in self.decoder.layers:
if isinstance(layer, HierarchicalLatents):
found_hierarchical_vars = True
layer.enable()
self._hierarchical_vars.append(layer)
if not found_hierarchical_vars:
raise ValueError('No HierarchicalLatents wrapper found in the decoder.')
@contextmanager
def sampling_mode(self):
"""Temporary switch all the hierarchical latents into sampling mode"""
[layer.sampling() for layer in self.hierarchical_latents]
yield self
[layer.inference() for layer in self.hierarchical_latents]
@property
def hierarchical_latents(self) -> Sequence[HierarchicalLatents]:
return tuple(self._hierarchical_vars)
def sample_prior(self, n: int = 1, seed: int = 1) -> Sequence[tf.Tensor]:
"""Sampling from prior distribution"""
z0 = super().sample_prior(n, seed)
with self.sampling_mode():
self.decode(z0, training=False)
Z = [z0]
for layer in self.hierarchical_latents:
Z.append(layer.prior.sample())
return tuple(Z)
def sample_observation(self, n: int = 1, seed: int = 1,
training: bool = False) -> Distribution:
z0 = super().sample_prior(n, seed)
with self.sampling_mode():
obs = self.decode(z0, training=training)
return obs
def sample_traverse(self,
inputs,
**kwargs) -> Distribution:
with self.sampling_mode():
obs = super().sample_traverse(inputs, **kwargs)
return obs
def get_latents(self,
inputs=None,
training=None,
mask=None,
return_prior=False,
**kwargs) -> Sequence[Distribution]:
z0 = super().get_latents(inputs=inputs, training=training, mask=mask,
return_prior=return_prior,
**kwargs)
posterior, prior = list(as_tuple(z0)), []
if return_prior:
posterior = list(as_tuple(z0[0]))
prior = list(as_tuple(z0[1]))
z0 = z0[0]
# new encode called
if inputs is not None:
self.decode(z0, training=training, mask=mask)
for layer in self.hierarchical_latents:
posterior.append(layer.posterior)
prior.append(layer.prior)
if return_prior:
return tuple(posterior), tuple(prior)
return tuple(posterior)
@classmethod
def is_hierarchical(cls) -> bool:
return True
def elbo_components(self, inputs, training=None, mask=None, **kwargs):
llk, kl = super().elbo_components(
inputs, training=training, mask=mask, **kwargs)
for idx, layer in enumerate(self.decoder.layers):
if not isinstance(layer, HierarchicalLatents):
continue
kl[f'kl_{layer.name}'] = self.beta * layer.kl_divergence(
analytic=self.analytic, reverse=self.reverse,
free_bits=self.free_bits)
return llk, kl
# ===========================================================================
# Unet VAE
# ===========================================================================
def _get_full_args(fn):
spec = inspect.getfullargspec(fn)
return spec.args + spec.kwonlyargs
def _prepare_encoder_decoder(encoder, decoder):
if isinstance(encoder, keras.Sequential):
encoder = [l.layer if isinstance(l, Wrapper) else l
for l in encoder.layers]
if isinstance(decoder, keras.Sequential):
decoder = [l.layer if isinstance(l, Wrapper) else l
for l in decoder.layers]
assert isinstance(encoder, (tuple, list)), \
f'encoder must be list of Layer, given {encoder}'
assert isinstance(decoder, (tuple, list)), \
f'decoder must be list of Layer, given {decoder}'
return encoder, decoder
class UnetVAE(BetaVAE):
""" Unet-VAE created for CIFAR10 """
def __init__(
self,
encoder: List[keras.layers.Layer],
decoder: List[keras.layers.Layer],
layers_map: Sequence[Tuple[str, str]] = (('encoder2', 'decoder2'),
('encoder0', 'decoder4')),
dropout: float = 0.,
noise: float = 0.,
beta: float = 10.,
free_bits: float = 2.,
**kwargs,
):
encoder, decoder = _prepare_encoder_decoder(encoder, decoder)
super().__init__(beta=beta,
free_bits=free_bits,
encoder=encoder,
decoder=decoder,
**kwargs)
encoder_layers = set(l.name for l in self.encoder)
# mappping from layers in decoder to encoder
self.layers_map = dict(
(j, i) if i in encoder_layers else (i, j) for i, j in layers_map)
if dropout > 0.:
self.dropout = keras.layers.Dropout(rate=dropout)
else:
self.dropout = None
if noise > 0.:
self.noise = keras.layers.GaussianNoise(stddev=noise)
else:
self.noise = None
@classmethod
def is_hierarchical(cls) -> bool:
return False
def encode(self,
inputs,
training=None,
mask=None,
only_encoding=False,
**kwargs):
h_e = inputs
kw = dict(training=training, mask=mask, **kwargs)
encoder_outputs = {}
for f_e in self.encoder:
args = _get_full_args(f_e.call)
h_e = f_e(h_e, **{k: v for k, v in kw.items() if k in args})
encoder_outputs[f_e.name] = h_e
qz_x = self.latents(h_e,
training=training,
mask=mask,
sample_shape=self.sample_shape)
qz_x._encoder_outputs = encoder_outputs
return qz_x
def decode(self,
latents,
training=None,
mask=None,
only_decoding=False,
**kwargs):
h_d = latents
kw = dict(training=training, mask=mask, **kwargs)
encoder_outputs = latents._encoder_outputs
for f_d in self.decoder:
args = _get_full_args(f_d.call)
h_d = f_d(h_d, **{k: v for k, v in kw.items() if k in args})
if f_d.name in self.layers_map:
h_e = encoder_outputs[self.layers_map[f_d.name]]
if self.dropout is not None:
h_e = self.dropout(h_e, training=training)
if self.noise is not None:
h_e = self.noise(h_e, training=training)
h_d = h_d + h_e
px_z = self.observation(h_d, training=training, mask=mask)
return px_z
class PUnetVAE(BetaVAE):
""" Probabilistic Unet-VAE
# TODO
What have been tried:
1. Soft connection: run autoencoder as normal, only add extra regularization
D(q(z|x)||p(z|x)) => posterior collaps in all the ladder latents
(i.e. except the main middle latents)
2. Semi-hard connection:
"""
def __init__(
self,
encoder: List[keras.layers.Layer],